期刊文献+

一种基于高斯混合模型与Markov建模的灰度图像分割方法

A gray image segmentation method based on Gaussian mixture model and Markov modeling
下载PDF
导出
摘要 当灰度图像中存在区域间灰度变化不明显或者含有噪声时,图像分割效果会受到比较严重的影响,本文针对此类问题,基于高斯混合模型,提出了一种改进的灰度图像分割算法。首先,基于马尔可夫随机场建模,将梯度因素引入邻域约束,推导图像的能量函数。然后,采用改进的期望最大(EM)算法对能量函数进行求解,E步通过图割法求解各像素点的分类,M步通过改进的期望最大(EM)算法求解高斯混合模型中的各参数。实验结果表明,本文的方法相对于直接用图割法能够求得更低的能量值,获得较好的分割结果。 When the gray variation among different regions of a gray image is not distinct or there are some noises,the results of image segmentation will be seriously influenced.In this paper,we present an improved gray image segmentation method based on the Gaussian mixture model to solve this problem.First,we introduce the factor of gradient to the neighborhood constraint based on the Markov random filed(MRF) model,and minimize the energy function of the image.Then,we adopt the improved EM algorithm to solve the energy function: E step is to solve the classified problem of each image pixel through graph cut method,and M step is to solve the parameters of Gaussian mixture model through the improved EM algorithm.As the experiment shows,compared with that directly using graph cut method,our method can get a lower energy value and a better result of segmentation.
出处 《中国体视学与图像分析》 2010年第4期364-371,共8页 Chinese Journal of Stereology and Image Analysis
基金 国家自然科学基金(60872145) 国家863高技术研究发展计划项目(2009AA01Z315) 高等学校科技创新工程重大项目培育资金项目(708085)
关键词 高斯混合模型 图割 EM 图像分割 梯度 image segmentation gaussian mixture model graph cut EM gradient
  • 相关文献

参考文献13

  • 1Li Yanling, Shen Yi. Robust image segmentation algorithm using fuzzy clustering based on kernel-induced distance measure [ C ]//2008 International Conference on Computer Science and Software Engineering. IEEE Computer Society, 2008 : 1065 - 1068.
  • 2He Huiguang, Ke Lu, Lv Bin. Gaussian mixture model with markov random field for MR image segmentation [ C]//2006 IEEE International Conference on Industrial Technology. 2006 : 1166 - 1170.
  • 3Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (11) :1222 - 1239.
  • 4Yedidia J, Freeman W T, Weiss Y. Understanding belief propagation and its generalizations [ C ]//Processing of International Joint Conference on Artificial Intelligence Distinguished Papers Track. 2001.
  • 5Kolmogorov V. Convergent tree-reweighted message passing for energy minimization [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (10) :1568 - 1583.
  • 6Boykov Y, Kolmogorov V. An experimental comparison of rain-cut/max-flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9) : 1124 - 1137.
  • 7Veksler O. Graph cut based optimization for MRFs with truncated convex priors [ C ]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Becognition. IEEE Computer Society, 2007: 1-8.
  • 8Hou Ye, Guo Baolong, Pan Jengshyang, et al. Image segmentation based on GC-CV [ C ]//Proceedings - 2009 9th International Conference on Hybrid Intelligent Systems. 2009 : 252 - 256.
  • 9Kolmogorov V, Rother C. Comparison of energy minimization algorithms for highly connected graphs [ C ]// 9th European Conference on Computer Vision ( ECCV 2006). Austria: Springer- verlag berlin, 2006:1 - 15.
  • 10Zabih R, Kolmogorov V. Spatially coherent clustering using graph cuts[ C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2004 : II437 - II444.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部