期刊文献+

一种改进二维投影模型运动参数估计算法

An improved algorithm for motion parameters estimation of two-dimensional projective model
下载PDF
导出
摘要 二维投影模型运动参数估计是图像序列运动分析的关键技术,针对Levenberg-Marquardt算法在解决二维投影模型运动参数估计问题时计算量大的缺点,提出了一种改进的二维投影模型运动参数估计算法。该方法通过对非线性最小平方误差函数的线性化,重新定义了目标函数,采用极小化目标函数的方法求解参数矢量,得到只与已知特征点对应关系有关的系数矩阵后,利用线性算法求解图像序列相邻两帧间二维投影模型的运动参数。实验结果表明,该算法在保证精确度的条件下,提高了计算效率。 The motion parameters estimation of two-dimensional projective model is a key technique in image sequence analysis.Aiming at the shortcoming of the algorithm for Levenberg-Marquardt algorithm,i.e.,huge computational cost,an improved algorithm for motion parameters estimation of two-dimensional projective model is proposed in this paper.Firstly,the algorithm redefines the objective function by linearizing the non-linear least-square error function.Then,minimization algorithm is used for the function to get the vector of the parameter.As a result,the coefficient matrix is only related to the feature-correspondence that we have known.Finally,the motion parameters of two-dimensional projective model are linearly solved.Experimental results show that the proposed algorithm ensures the precision and improve the computational efficiency.
出处 《中国体视学与图像分析》 2010年第4期372-376,共5页 Chinese Journal of Stereology and Image Analysis
基金 国家自然基金项目(60872144)
关键词 运动参数估计 二维投影模型 最小平方误差 motion parameter estimation two-dimensional projective model least-square error
  • 相关文献

参考文献5

  • 1Marquardt D. An algorithm for least-squares estimation of nonlinear parameters[ J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11 (2) :431 -441.
  • 2Cootes T F, Edwards G J, Taylor C J. Active appearance models[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001 , 23 (6) : 681 - 685.
  • 3Gleicher M. Projective registration with difference decomposition [ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Puerto Rico: 1997:331 - 337.
  • 4Hager G D, Belhumeur P N. Efficient region tracking with parametric models of geometry and illumination [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20(10) :1025 - 1039.
  • 5Shum H Y, Szeliski R. Construction of panoramic image mosaics with global and local alignment[ J]. International Journal of Computer Vision, 2000, 16( 1 ) : 63 -84.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部