期刊文献+

交叉口Agent间的多遇协调策略及其参数影响分析 被引量:4

A Multi-interaction Coordination Strategy for Intersection Agents and Analysis of Its Parameter Affection
下载PDF
导出
摘要 为信号控制的城市道路交叉口定义一个Agent结构模型,在分析相邻交叉口交通流关联关系的基础上,利用记忆因子δ、学习概率α、交叉口交通流变化概率βi等参数阐述了交叉口Agent间的多遇协调流程。交叉口Agent多遇协调采用部分获利协作策略,其交互策略更多地考虑在获利少于对方时候如何以更加协作的态度进行协调。利用记忆因子δ构建了交叉口Agent多遇历史学习协调算法。以交叉口Agent集合达到协调平衡模式需要的交互次数为性能指标,以数个交叉口相连接的主干道为例分析了δ、α、βi等参数对此策略和算法的协调性能的影响,结果表明交叉口Agent集合达到协调平衡模式需要的交互次数随着α的减少、βi的增加、δ的减少而增加,具有一定的动态环境适应能力和协调能力。 An Agent controller model for signalized intersection was defined.The multi-interaction coordination progress for urban intersection Agents was described based on the traffic flow relationship of adjacent intersections using the parameters such as memory factor δ,learning probability α,and local traffic change probability β_i at each intersection.Part lucrative cooperation strategy which can consider more how to coordinate better when getting less gain than opponent was adopted in the multi-interaction coordination.On the basis of this,multi-interactive history learning coordination algorithm was constructed.How the parameters δ,α and β_i will affect the strategy and the algorithm's performance measured by the interaction times of intersection Agents needed to reach a given equilibrium pattern was analysed taking an arterial road composed of a few connected intersections as an example.The results show that the interaction times needed to reach a given equilibrium pattern of coordination increases along with the decrease of α and δ and the increase of β_i.So the proposed strategy and algorithm have some dynamic environment adaptability and coordination ability.
出处 《公路交通科技》 CAS CSCD 北大核心 2011年第4期100-104,111,共6页 Journal of Highway and Transportation Research and Development
基金 国家自然科学基金资助项目(60664001)
关键词 交通工程 AGENT 交互 交通信号控制 学习 协调 traffic engineering Agent interaction traffic signal control learning coordination
  • 相关文献

参考文献10

  • 1张辉,杨玉珍,李振龙,陈阳舟.基于分布式Q学习的区域交通协调控制的研究[J].武汉理工大学学报(交通科学与工程版),2007,31(6):1121-1124. 被引量:8
  • 2BAKKER B, STEINGROVER M, SCHOUTEN R, et al. Cooperative Multi-agent Reinforcement Learning of Traffic Lights [ C ] //Proceedings of the Workshop on Cooperative Multi-Agent Learning, European Conference on Machine Learning. Porto, Poetugal : ECML, 2005 : 24 - 36.
  • 3ROOZEMOND D A, VAN DER VEER P. Usability of Intelligent Agent Systems in Urban Traffic Management [ J ]. Application of Artifical Intelligence in Engineering, 1999 (7): 15-18.
  • 4WIERING M. Multi-Agent Reinforcement. Learning for Traffic Light Control [ C ] //Seventeeth International Conference on Machine Learning and Applications. San Francisco, CA : Morgan Kaufmann Publishers Incorporation, 2000 : 1151 - 1158.
  • 5PENDRITH M D. Distributed Reinforcement Learning for a Traffic Engineering Application [ M ]. New York: ACM Press, 2000:404-411.
  • 6欧海涛,张卫东,许晓鸣.基于RMM和贝叶斯学习的城市交通多智能体系统[J].控制与决策,2001,16(3):291-295. 被引量:16
  • 7石纯一,张伟.基于Agent的计算[M].北京:清华大学出版社.2007:11-12,119-120.
  • 8马寿峰,李英,刘豹.一种基于agent协调的两路口交通控制方法[J].系统工程学报,2003,18(3):272-278. 被引量:25
  • 9ABDULHAI B, PRINGLE P. Autonomous Multiagent Reinforcement Learning: 5gc Urban Traffic Control [ C/ OL] //Annual Transportation Research Board Meeting. Shoreham: TRB, 2003.
  • 10李明利,王选民,张利川.静止队列法交叉口排队与停车延误分析[J].交通信息与安全,2009,27(4):43-46. 被引量:2

二级参考文献28

共引文献70

同被引文献43

  • 1汪贤裕,肖玉明.博弈论及其应用[M].北京:科学出版社.2008:94-96.
  • 2汪贤裕,肖玉明.博弈论及其应用[M].科学出版社,2008.
  • 3Watkins C J C H,Dayan P.Technical Note Q-learning[J].Journal of Machine Learning,1992(8):279-292.
  • 4Hu J,Wellman M P.Nash Q-learning for General-sum Stochastic Games[J].Journal of Machine Learning,2003(4):1039-1069.
  • 5Marco Wiering,Jilles Vreeken,Jelle van Veenen,et al.Simulation and Optimization of Traffic in a City[C]//IEEE Intelli-gent Vehicles Symposium(IV’04).Parma:[s.n.],2004:453-458.
  • 6Wiering M.Multi-agent Reinforcement Learning for Traffic Light Control[C]//Seventeeth International Conference onMachine Learning and Applications.SanFrancisco:Morgan Kaufmann Publishers Incorporation,2000:1151-1158.
  • 7Bakker B,Steingrver M,Schouten R,et al.Cooperative Multi-agent Reinforcement Learning of Traffic Lights[C]//Pro-ceedings of the Workshop on Cooperative Multi-agent Learning,European Conference on Machine Learning.Berlin:Springer,2005:24-36.
  • 8Thomas L Thorpe,Charles W Anderson.Traffic Light Control Using SARSA with Three State Representations[R].[S.l.]:IBM Corporation,1996.
  • 9Douglas Aberdeen.Policy-gradient Algorithms for Partially Observable Markov Decision Processes[D].Canberra,Aus-tralian National University,2003.
  • 10Jonathan Baxter,Peter L Bartlett.Infinite-horizon Policy-gradient Estimation[J].Journal of Artificial Intelligence Re-search,2001,15:319-350.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部