期刊文献+

Robust Solutions to Uncertain Linear Complementarity Problems 被引量:1

Robust Solutions to Uncertain Linear Complementarity Problems
原文传递
导出
摘要 In this paper, we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain, and it is only known to belong to a prescribed uncertainty set. We propose the notion of the p-robust counterpart and the p-robust solution of uncertain linear complementarity problems. We discuss uncertain linear complementarity problems with three different uncertainty sets, respectively, including an unknown-but-bounded uncertainty set, an ellipsoidal uncertainty set and an intersection-of-ellipsoids uncertainty set, and present some sufficient and necessary (or sufficient) conditions which p-robust solutions satisfy. Some special eases are investigated in this paper. In this paper, we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain, and it is only known to belong to a prescribed uncertainty set. We propose the notion of the p-robust counterpart and the p-robust solution of uncertain linear complementarity problems. We discuss uncertain linear complementarity problems with three different uncertainty sets, respectively, including an unknown-but-bounded uncertainty set, an ellipsoidal uncertainty set and an intersection-of-ellipsoids uncertainty set, and present some sufficient and necessary (or sufficient) conditions which p-robust solutions satisfy. Some special eases are investigated in this paper.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第2期339-352,共14页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.10671010,10871144 and 10671145)
关键词 uncertain linear complementarity problems robust optimization technology uncertainty set p- robust solution uncertain linear complementarity problems, robust optimization technology, uncertainty set p- robust solution
  • 相关文献

参考文献15

  • 1Ben-Tal, A., Boyd, S., Nemirovski, A. Extending the scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program., 107(1): 63-89 (2006).
  • 2Ben-Tal, A., Nemirovski, A. Robust convex optimization. Math. Oper. R'es., 23(4): 769-805 (1998).
  • 3Ben-Tall A.I Nemirovskil A. Robust solutions to uncertain linear programs. Oper. Res. Lett., 25(1): 1-13 (1999).
  • 4Ben-Tal, A., Nemirovski, A. Robust solutions of linear programming problems contaminated with uncertain data. Math. Program., 88(3): 411-424 (2000).
  • 5BemTal, A., Nemirovski, A., Roos, C. Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM J. Optim., 13(2): 535-560 (2002).
  • 6Bertsimas, D, Sim, M. The price of robustness. Oper. Res., 52(1): 35-53 (2004).
  • 7Chen, X., Fukushima, M. Expected residual minimization mettlod for stochastic linear complementarity problems. Math. Oper. Res., 30(4): 1022-1038 (2005).
  • 8Cottle, R.W., Pang, J-S., Stone,'R.E. The Linear Complementarity Problem. Academic Press, Boston, 1992.
  • 9Goldfarb, D., Iyengar, G. Robust quadratically constrained programs. Math. Program., 97(3): 495-515 (2003).
  • 10Gurkmn, G., Ozge, A.Y., Robinson, S.M. Sample-path solution of stochastic variational inequalities. Math. Program., 84(2): 313-333 (1999).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部