期刊文献+

基于微粒群辨识算法的电力负荷综合模型的建模与仿真

Power System Load Modeling and Simulation Based On PSO Algorithm
下载PDF
导出
摘要 微粒群优化(PSO)算法具有全局性能好、搜索效率高等优点。应用该算法进行电力系统负荷模型的参数辨识,辨识结果表明PSO算法在计算时间、全局性方面均有比较明显的优势。辨识的模型具有较高精确性,最后通过工程实例进行仿真实验,实验结果验证了模型和算法的有效性。 This paper introduced particle swarm optimization(PSO) algorithm,which is efficient and quite immune to local optima.The paper applies PSO algorithm to electrical load parameter identification,and the results verify that PSO algorithm is fairly good in both efficiency and global superiority.The load model based on the algorithm is of high accuracy.In the end,simulation experiments of engineering example are carried on,and the results confirm the availability of both PSO algorithm and the load model.
作者 谷鹏 石国萍
出处 《江苏电机工程》 2011年第2期41-44,共4页 Jiangsu Electrical Engineering
关键词 电力系统 负荷模型 微粒群算法 参数辨识 power systems load modeling PSO algorithm parameter identification
  • 相关文献

参考文献7

二级参考文献43

共引文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部