摘要
This paper investigates the nonequilibrium dynamics of two-dimensional Ising spin glass by dynamical Monte Carlo simulations. A new method is developed to quantitatively measure the age of domain growth. Using this method it investigates how temperature shift affects the effective age of domain growth. It finds that the T-shift dependence of the effective age follows the prediction of the droplet model quite well. It also investigates the overlap length between the spin glass states as well as the correlated flips of spins, which are not consistent with the theoretical predictions. The possible reasons are discussed.
This paper investigates the nonequilibrium dynamics of two-dimensional Ising spin glass by dynamical Monte Carlo simulations. A new method is developed to quantitatively measure the age of domain growth. Using this method it investigates how temperature shift affects the effective age of domain growth. It finds that the T-shift dependence of the effective age follows the prediction of the droplet model quite well. It also investigates the overlap length between the spin glass states as well as the correlated flips of spins, which are not consistent with the theoretical predictions. The possible reasons are discussed.