摘要
利用奇异积分方程方法研究了正交各向异性的功能梯度材料涂层基底结构的平面断裂问题,首先通过积分变换得到问题的形式解,然后利用边界条件通过积分变换与留数定理得到了一组奇异积分方程,最后利用Gauss-Chebyshev方法进行数值求解,讨论了材料参数、材料非均匀参数以及裂纹几何形状等对裂纹尖端应力强度因子的影响.
In this paper, the Fourier integral transform-singular integral equation method is presented for the Mode-I crack problem of the orthotropic functionally graded coating-substrate structure. The elastic property of the material is assumed vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the boundaries of the strip. The mixed boundary value problem is reduced to a singular integral equation over crack by applying the Fourier transform and the singular integral equation is solved numerically by using the Gauss-Chebyshev integration technique. Numerical examples are presented to illustrate the effects of the crack length, the material nonhomogeneity and the thickness of coating on the stress intensity factors.
出处
《宁夏大学学报(自然科学版)》
CAS
北大核心
2011年第1期22-27,共6页
Journal of Ningxia University(Natural Science Edition)
基金
国家自然科学基金资助项目(10962008
51061015)
关键词
正交各向异性功能梯度材料
奇异积分方程
应力强度因子
裂纹
涂层基底结构
orthotropic functionally graded material
singular integral equation
stress intensity factor
crack
coating-substrate stucture