期刊文献+

外力调制下壳模型阵发混沌的相变行为

The Phase Transition Behavior of Intermittent Chaos in Shell Model under Modulation of External Force
下载PDF
导出
摘要 研究了Gledzer-Ohkitani-Yamada模型在周期外力和反馈外力调制下的相变和稳定性.外周期力的调制强度和调制周期都会影响准周期到混沌的相变行为.若固定调制周期,则临界点随调制强度的增大而增大,并且随着调制强度逐渐增强,临界点对于调制强度的依赖由非线性变为准线性.若固定调制强度,则调制周期的增加可以增强系统的稳定性.在反馈外力的作用下,弱调制就可以产生强共振并影响系统的稳定性. The phase transition and stability of Gledzer-Ohkitani-Yamada model forced by modulated periodic external force and feedback force is investigated. Both the modulated intension and period of periodic external force can influence the phase transition from quasi-periodic state to intermittent chaos. If the modulated period is fixed, the critical value will increase along with the modulated intension increased. Furthermore, along with the increasing of modulated intension, the reliance of critical value on modulated intension changes from nonlinear function into quasi-linear function. If the modulated period is fixed, the increase of modulated period can strengthen the stability of syster. Under the function of feedback, week modulation can produce the strong resonance in the model and influence the stability of system.
作者 姜丽娜 孙鹏
出处 《宁夏大学学报(自然科学版)》 CAS 北大核心 2011年第1期43-47,52,共6页 Journal of Ningxia University(Natural Science Edition)
关键词 调制周期外力 反馈外力 相变 modulated periodic external force feedback force the phase transition
  • 相关文献

参考文献4

二级参考文献48

  • 1金艳,楼森岳.参数激励非线性薛定谔方程的非传播孤立波和周期波解[J].辽宁师范大学学报(自然科学版),2005,28(3):290-293. 被引量:5
  • 2董晓梅,赵峥荣.具有时滞的Lurie型控制系统稳定性准则(英文)[J].辽宁师范大学学报(自然科学版),2006,29(2):136-138. 被引量:1
  • 3姜丽娜,吴炜.阵发混沌导致反常标度[J].辽宁大学学报(自然科学版),2007,34(2):112-115. 被引量:3
  • 4ANSELMET F, GAGNE Y, HOPFINGER E J, et al. High-order velocity structure functions in turbulent shear flow[J]. Journal of Fluid Mechanics, 1984, 140:63-89.
  • 5PARISI G, FRISCH U. On the singularity structure of fully developed turbulenee[C] // Proceeding of the International School on Turbulence and Predictability in Geophysical Fluid Dynamics ang Climate Dynamics. Amsterdam:Ghil North Horland, 1985:84-88.
  • 6BENZI R, PALADIN G, PARISI G, et al. On the multifractal nature of fully developed turbulence and chaotic systems[J]. Journal of Physics A: Mathematical and General, 1984,17:3521-3531.
  • 7SHE Z S, LEVEQUE E. Universal scaling laws in fully developed turbulence[J]. Physical Review Letters, 1994,72(3) :336-339.
  • 8SHE Z S, WAYMIRE E C. Quantized energy cascade and log-Poisson statistics in fully developed turbulence [J]. Physical Review Letters, 1994,74(2) :262-265.
  • 9SHE Z S. Universal law of cascade of turbulent fluctuations[J]. Theoretical Physics Supplement, 1998,130: 87-102.
  • 10BIFERALE R, LAMBERT A, LIMA R, et al. Transition to chaos in a shell model of turbulence[J]. Physica D, 1995,80(1/2) : 105-119.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部