摘要
设G是一个群,πe(G)为G的元素的阶的集合.令τe(G)={mk k∈πe(G)},这里mk为G的k阶元的个数.我们证明了L2(25)可以用τe(L2(25))刻画.换言之,如果G是群,并且满足τe(G)=τe(L2(25))={1,1 023,992,4 960,15 840,9 920},那么G■L2(25).
Let G be a group and πe(G) the set of element orders of G.Suppose that τe(G)={mk|k ∈ πe(G)},where mk is the number of elements of order k in G.In this paper we prove that L2(25) is characterizable by τe(L2(25)),in other words,if G is a group such that τe(G)=τe(L2(25))={1,1 023,992,4 960,15 840,9 920},then G is isomorphic to L2(25).
出处
《苏州大学学报(自然科学版)》
CAS
2011年第1期6-9,共4页
Journal of Soochow University(Natural Science Edition)
基金
the NNSF of China(10871032)
the SRFDP of China(20060285002)
关键词
元素的阶
可刻画
同阶元长度
Thompson问题
element orders
characterizable
the number of elements with the same order
Thompson Problem