摘要
在有效场理论和切断近似的框架内,研究三模外场和晶场作用自旋S=1横场Ising模型的临界性质,在T-h空间中横场和三模外场参数的变化对三临界点、二级相变以及基态时外场简并均有很大的影响,横场与合适的三模外场参数能有效地抑制三临界点;T-D空间中三模外场及合适的三模外场参数在无横场时呈现出另一类三临界点和重入相变,横场的引入可很好地抑制三临界点和重入相变,在一定的横场作用范围内三临界点可出现起伏.
Within the framework of the effective field theory(EFT) and cutting approximation,we study the critical properties of transverse Ising model with crystal field in a trimodal field.The change of transverse field and tirmodal magnetic parameter can affect the tricritical point(TCP),the second-order phase and the magnetic field degeneration at ground state in T-h space.Moreover,the transverse field and a proper trimodal parameter can depress the TCP.In T-D space,a trimodal magnetic field and a proper parameter can take on the other kind TCP and the reentrant phenomenon when transverse field is zero.The TCP can take place a fluctuation under certain range of transverse field role.
出处
《苏州大学学报(自然科学版)》
CAS
2011年第1期39-43,共5页
Journal of Soochow University(Natural Science Edition)
基金
江苏省高等学校自然科学基金项目(03KJA140117)
关键词
横场Ising模型
临界性质
晶场
三模外场
transverse Ising model
critical property
crystal field
trimodal magnetic field