期刊文献+

B(H)上的酉可导映射 被引量:4

Unitary Derivable Mappings on B(H)
原文传递
导出
摘要 设H是维数大于2的复Hilbert空间,B(H)表示H上所有有界线性算子构成的代数.若φ∶B(H)→B(H)上的有界线性映射,如果对所有的A∈B(H)且A~*A=AA~*=I,有φ(A)~*A+A~*φ(A)=φ(A)A~*+Aφ(A)~*=φ(I),则存在数λ∈R和算子S∈B(H),且S+S~*=λI,使得对所有的A∈B(H),有φ(A)=AS-SA. Let H be a complex Hilbert space with dim H2,B(H) denote the algebra ofall linear bounded operators on H.Letφbe a bounded linear mapping on B(H),ifφ(A)~*A +A~*φ(A) =φ(A)A~* + Aφ(A)~* =φ(I) for any A∈B(H) with A~*A = AA~* = I,thenφ(A) =AS-SA for all A∈B(H),where S∈B(H),and S + S~* =λI,λ∈R.
出处 《数学进展》 CSCD 北大核心 2011年第2期241-246,共6页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10571114) 陕西省自然科学基础研究计划资助项目(No.2004A17)
关键词 酉算子 酉可导映射 投影 导子 unitary operator unitary derivable mapping projection derivation
  • 相关文献

参考文献9

  • 1Zhu J., Xiong C., Derivable mapping at unit operator on nest algebras, Linear Algebra Appl., 2007, 422: 721-735.
  • 2Hou J., Qi F., Additive maps deriwble at some poits on J-subspace lattice algebras, Linear Algebra Appl., 2008, 429: 1851-1863.
  • 3Bresar, M., Commuting traces of biadditive mappings commutativity-preserving mappings and lie map- pings, Trans. Amer. Math. Soc., 1993, 335: 525-546.
  • 4Bre~ar, M., Semrl, P., Commuting traces of biadditive maps revisited, Comm. Algebra., 2003, 31: 381-388.
  • 5Beidar, K.I., Bresar, M. and Chebotar, M.A., Applying functional identities to some linear preserver problems, Pacific J. Math., 2002, 204: 257-271.
  • 6Benkovic, D., Erita, D., Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra., 2004, 280: 797-824.
  • 7Ralf, B., Martin, M., Commutativity preserving mappings on semiprime rings, Comm. Algebra., 1997, 25: 247-265.
  • 8Bresar, M., Centralizing mappings and derivations in prime rings, Journal of algebra., 1993, 156: 385-394.
  • 9Bresar, M., Jordan derivations on semiprime rings, Proc Amer Math Soc., 1988, 104: 1003-1006.

同被引文献35

  • 1DIQINGHUI,DUXUEFENG,HOUJINCHUAN.ADJACENCY PRESERVING MAPS ON THE SPACE OF SELF-ADJOINT OPERATORS[J].Chinese Annals of Mathematics,Series B,2005,26(2):305-314. 被引量:2
  • 2Hou jinchuan, Qi xiaofei. Additive maps derivable at some points on J-subspace lattice algebras[J]. Linear Algebra and its Applications, 2008, 429 ( 2 ): 1851-1863.
  • 3Wu jin. On Jordan all-derivable points of B(H)[J]. Linear Algebra and its Applications, 2009, 430(3): 941-946.
  • 4Herstein I N. Jordan derivation on prime rings[J]. Proceedings of the American Mathematical Society, 1957, 8(6): 1104-1110.
  • 5Vukman J, Kosi-Uibi I. On derivations in rings with involution [ J ]. International Mathmatical Journal, 2005, 6(2): 81-91.
  • 6Bresar M. Jordan mappings of semiprime rings[J]. Journal of Algebra, 1989, 127(1): 218-228.
  • 7Vukman J. On derivations of algebras with involution [J].Acta Mathematica Hungarrica, 2006, 112(3): 181-186.
  • 8Herstein I N. Jordan Derivation on Prime Rings[J]. Proc Amer Math Soc, 1957, 8(6): 1104-1110.
  • 9Vukman J, Kosi-Ulbl I. On Derivations in Rings with Involution [J] Intern Math Journal, 2005, 6(2) : 81-91.
  • 10Brear M. Jordan Mappings of Semiprime Rings [J]. J Algebra, 1989, 127(1): g18-228.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部