期刊文献+

基于条件PDF的宽带ISF参数分裂矢量量化方法

Split vector quantizer for wideband ISF parameters based on conditional PDF
下载PDF
导出
摘要 宽带ISF参数的矢量量化是语音编码中的重要环节,其量化性能的高低对于解码端语音的质量有重要影响.针对宽带语音ISF参数矢量量化问题,提出了一种新的量化方法.该方法利用ISF参数帧间相关性,将相邻2帧ISF参数的条件PDF用高斯概率模型表示.与传统分裂矢量量化不同,该方法首先根据前一帧的量化结果对当前帧分类、选择合适的码书,然后对该帧在选定的码书中进行分裂矢量量化.实验表明,该算法在每帧编码比特数44时达到透明量化,且平均谱失真比利用传统分裂矢量量化时的谱失真小. Vector quantizing of wideband ISF parameters is an important part of speech coding,and its performance decides the quality of the speech after decoded.A new vector quantization method is proposed for coding the wideband ISF(Immittance Spectral Frequencie)sparameters.In this approach,the conditional PDF(probability density Function)for the parameter vectors of successive source frames is modeled using a GMM(Gaussian mixture mode)l because there exists interframe correlation.In this quantizer,the current frame is classified to choose appropriate quantization codebook based on the previous frame firstly,and then the ISF parameter is quantized using split vector quantization.Experimental results show that this quantization scheme achieves transparent coding at 44bits/frame,and the average spectral distortion is lower than that of traditional split vector quantization.
出处 《应用科技》 CAS 2011年第3期24-28,共5页 Applied Science and Technology
基金 国家自然科学基金资助项目(607702053)
关键词 矢量量化 导抗谱频率 条件高斯混合模型 帧间相关性 vector quantization immittance spectral frequencies conditional Gaussian mixture model interframe correlation
  • 相关文献

参考文献8

  • 1鲍长春.数字语音编码原理[M].西安:西安电子科技大学出版社,2007.
  • 2BISTRITZ Y, PELLER S. Immittance spectral pairs (ISP) for speech encoding [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Minneapolis, USA, 1993, 2: 9-12.
  • 3PALIWAL K K, ATAL B S. Efficient vector quantization of LPC parameters at 24 bits/frame[J]. IEEE Trans on Speech and Audio Processing, 1993,1 ( 1 ): 3-14.
  • 4STEPHEN S, PALIWAL K K. Efficient product vector quantization using the switched split vector quantiser [J]. Digital Signal Processing, 2007, 17:138-171.
  • 5HEDLIN P, SKOGLUND J. Vector quantization based on Gaussian mixture models[J]. IEEE Trans on Speech and Audio Processing, 2000,8(4):385-401.
  • 6SUBRAMANIAM A D, GARDNER W R, RAO B D. Lowcomplexity source coding using Gaussian mixture models, lattice vector quantization, and recursive coding with application to speech spectrum quantization [J]. IEEE Trans on Speech and Audio Processing, 2006, 14(2):524-532.
  • 7ZHAO D Y, SAMUELSSON J, NILSSON M. GMM-based entropy-constrained vector quantization[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, USA, 2007, 4: 1097-1100.
  • 8CHATYERJEE S, SREECIVAS T V. Sequential split vector quantization of LSF parameters using conditional pdf [C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, USA, 2007, 4:1101-1104.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部