期刊文献+

二维XY模型始于有序初态的aging现象

Aging Phenomenon of 2D XY Model Starting from an Ordered Intial State
原文传递
导出
摘要 应用蒙特卡罗数值模拟方法,对二维XY模型始于有序初态的aging现象展开研究。模拟温度设在临界温度附近,模拟的物理量为双时自关联函数A(t,t')。其难度在于对从有序初态开始的动力学过程,解析研究滞后于数值研究,因此对标度形式的推论成为热点。数值研究发现,非平衡态下的二维XY系统的自关联函数与空间关联长度之比ξ(t)/ξ(t')相关,在相变点附近具有标度行为,证实系统处于aging过程。更重要的是通过对双时自关联函数仔细的动力学标度分析,得到了与以往文献相比更为可信的标度形式。用数值方法证实了这种标度形式不仅在低温下成立,在临界温度附近也成立。因为与其他文献相比,本研究的模拟温度更接近临界点,并在这样的动力学标度下得到了正确的临界指数,说明本研究的实验数据是自洽和可信的,同时观察到不同等待时间下模拟实验数据的collapse现象。 With Monte Carlo simulation method,the aging phenomenon of the 2D XY model is numerically studied.Starting from an ordered initial state,the system is suddenly quenched to critical temperature Tc.The two-time autocorrelation function A(t,t') is measured.For a dynamic process with an ordered initial state,the difficult problem is that accurate analysis is lagging behind the Monte Carlo simulation study.So many activities have been devoted to dynamic scaling form.According to the numerical experimental data of 2D XY non-equilibrium system,the relation between A(t,t') and ratio of spatial correlation length is detected.The aging phenomenon exhibits a dynamic scaling behavior induced by the time correlation.The aging phenomenon is characterized by the dynamic scale invariance.The aging phenomenon of 2D XY model is confirmed.Especially,the correction of scaling behavior is numerically verified,the form of dynamic scaling of A(t,t') is more creditable than existing literatures.For a dynamic process starting from an ordered initial state,the scaling form assumption fits the numerical data well.The scaling form holds not only at lower temperatures but also around Tc.This is because of the simulation temperature is close to the critical temperature.Based on the dynamic scaling,the experimental data indicate that more accurate values of the critical exponents can be obtained.In addition,the data collapse phenomenon is observed.
作者 赵晓雨
出处 《科技导报》 CAS CSCD 北大核心 2011年第11期56-58,共3页 Science & Technology Review
基金 重庆市教委科学技术研究项目(KJ091212) 重庆文理学院科技项目(Y2007YJ40)
关键词 蒙特卡罗 aging现象 动力学标度 Monte Carlo simulation aging phenomenon dynamic scale
  • 相关文献

参考文献16

  • 1Calabrese P, Gambassi A. Aging in ferromagnetic systems at criticality near four dimensions[J]. Phys Rev E, 2002, 65(6): 66120-66125.
  • 2Montanari A. Aging dynamics of heterogeneous spin models[j]. Phys Rev B, 2003, 68(22): 224429-224448.
  • 3Henkel M, Pleimling M. Local scale invariance as dynamical space-time symmetry in phase-ordering kinetics [J]. Phys Rev E, 2003, 68 (6): 65101-65104.
  • 4Picone A, Henkel M. Local scale-invariance and ageing in noisy system [J]. Nucl Phys B, 2004, 688(3): 217-265.
  • 5Schehr G, Paul R. Universal aging properties at a disordered critical point[J]. Phys Rev E, 2005, 72(1): 161005-161011.
  • 6雷晓蔚.二维Ising和XY模型的老化现象研究[J].浙江大学学报(理学版),2007,34(2):168-171. 被引量:2
  • 7雷晓蔚,郑波,应和平.二维自旋系统aging现象的数值模拟研究[J].物理学报,2007,56(3):1713-1718. 被引量:2
  • 8Martinez V A, Bryant G, Megen W V. Slow dynamics and aging of a colloidal hard sphere glass [J]. Phys Rev Lett, 2008, 101 (13): 135702- 135705.
  • 9Amir A, Oreg Y, Imry Y. Slow relaxations and aging in the electron glass [J]. Phys Rev Lett, 2009, 103(12): 126403-126406.
  • 10Richert R. Physical aging and heterogeneous dynamics [J]. Phys Rev Lett, 2010, 104(8): 85702-85705.

二级参考文献50

  • 1邵元智,钟伟荣,卢华权,雷石付.Ising自旋体系的非平衡动态相变[J].物理学报,2006,55(4):2057-2063. 被引量:3
  • 2LI Z B, SCHuLKE L, ZHENG B. Dynamic Monte Carlo measurement of critcial exponents[J]. Phys Rev Lett, 1995, 74(17): 3396-3398.
  • 3ZHENG B. Generalized dynamic scaling for critical relaxations[J]. Phys Rev Lett, 1996,77(4) : 679-682.
  • 4ZHENG B. Monte Carlo simulations of short-time critical dynamics[J]. Int J Mad Phys B, 1998, 12(14):1419-1484.
  • 5JSATER A, MAINVILLE J, SCHULKE L, et al.Short-time critical dynamics of three-dimensional Ising model[J]. Nucl Phys B, 1999, 32: 1395-1406.
  • 6SCHULKE L, ZHENG B. The short-time dynamics of the critical Potts model[J]. Phys Rev Lett A, 1995,204 : 295-304.
  • 7ZHENG B, SCHULZ M, TRIMPER S. Deterministic equations of motion and dynamic critical phenomena[J]. Phys Rev Lett, 1999, 82(9) : 1891-1894.
  • 8YING H P, ZHENG B, YU Y, et al. Correction to scaling for the two-dimensional dynamic XY model[J]. Phys Rev E, 2001, 63(3):R35101(1-4).
  • 9ZHENG B, REN F, REN H. Correction to scaling in two-dimensional dynamic XY and fully frustrated XY models[J]. Phys Rev E, 2003, 68(4): 046120(1-9).
  • 10GODReCHE C, LUCK J M. Nonequilibrium critical dynamics of ferromagnetic spin systems[J]. J Phys:Condens Matter, 2002, 14: 1589-1599.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部