摘要
为了提高潜在支持向量机求解大规模问题的训练速度,提出了基于样本取样的潜在支持向量机序列最小优化算法,去掉了大部分非支持向量,把支持向量逐渐压缩到取样样本集中.此算法特别适合大样本数据且支持向量个数相对较少的情况.实验表明,改进的序列最小优化算法加速了潜在支持向量机分类器训练时间.
To accelerate the training speed of the Potential Support Vector Machine(PSVM)for large-scale datasets,a new method is proposed,which introduces the sequential minimal optimization(SMO)algorithm based on sampling for PSVM.The new method removes most non-support vectors,and compresses the support vectors to the sampling set.This method is more suitable for large-scale datasets with relatively small number of support vectors.The experimental results show that the improved SMO algorithm decreases the training time.
出处
《河北大学学报(自然科学版)》
CAS
北大核心
2011年第2期113-117,共5页
Journal of Hebei University(Natural Science Edition)
基金
河北省自然科学基金资助项目(F2011201063)
河北大学自然科学研究计划博士项目(Y2008122)
河北省教育厅科学技术研究计划资助项目(2009107)
关键词
潜在支持向量机
序列最小优化
取样
potential support vector machine
sequential minimal optimization
sampling