期刊文献+

二阶周期边值问题正解的存在性 被引量:1

Existence of Positive Solutions to Second Order Ordinary Differential Systems with Periodic Boundary Value
下载PDF
导出
摘要 周期边值问题已成为方程研究领域的一个重要分支,它在许多实际问题中有着更为广泛的应用,本文主要研究了二阶周期边值问题正解的存在性.利用锥上不动点指数理论研究了二阶周期边值问题方程组的正解的存在性,通过相应的线性问题的第一特征值和拓扑度乘积定理,建立了正解的存在性定理.最后,我们给出具体的例子说明了该正解存在性定理的结论. The periodic boundary value problem has been an important area of investigation and it has been applied in a lot of practical problems.We mainly discuss in this paper the positive solutions to the second order ordinary differential systems with periodic boundary value.We obtain the existence of the positive solutions to the second order ordinary differential systems with periodic boundary value by employing the fixed-point theory,and establish the existence theorems of the positive solutions by using the first eigenvalue of the corresponding linear problem and the product of topology degree.Finally,we present an example to demonstrate the existence theorems of the positive solutions.
作者 杨树勍
出处 《工程数学学报》 CSCD 北大核心 2011年第2期238-244,共7页 Chinese Journal of Engineering Mathematics
关键词 正解 周期边值问题 不动点指数 拓扑度 positive solutions periodic boundary value problem the fixed-point index topdogy degree
  • 相关文献

参考文献4

  • 1Dunninger D R, Wang H. Existence and multiplicity of positive solutions for elliptic systems[J]. Nonlinear Analysis, 1997, 29(9): 1051-1060.
  • 2Cheng X, Zhong C. Existence of positive solutions for a second-order ordinary differential system[J]. Journal of Mathematical Analysis and Applications, 2005, 312(1): 14-23.
  • 3Li F, Liang Z. Existence of positive periodic solutions to nonlinear second order differential equations[J]. Applied Mathematics Letters, 2005, 18(11): 1256-1264.
  • 4李永祥.二阶非线性常微分方程的正周期解[J].数学学报(中文版),2002,45(3):481-488. 被引量:45

二级参考文献15

  • 1Leela S., Monotone method for second order periodic boundary value problems, Nonlinear Anal., 1983, 7:349-355.
  • 2Nieto J. J., Nonlinear second-order peroidic boundary value problems, J. Math, Anal. Appl., 1988, 130:22-29.
  • 3Cabada A., Nieto J. J., A generation of the monotone iterative technique for nonlinear second-order periodicboundary value problems, J. Math. Anal. Appl., 1990, 151: 181-189.
  • 4Cabada A., The method of lower and upper solutions for second, third, forth, and higher order boundaryvalue problens, J. Math. Anal. Appl., 1994, 185: 302-320.
  • 5Gossez J. P., Pmari P., Periodic solutions of a second order ordinary differential equation: anecesary andsufficient condition for nonresonance, J. Diff. Equs., 1991, 94: 67-82.
  • 6Omari P., Villari G., Zandin F., Periodic solutions of lienard equation with one-sided growth restrictions, J.Diff. Equs., 1987, 67: 278-293.
  • 7Ge Weigao, On the existence of harmonic solutions of lienard system, Nonlinear Anal., 1991, 16(2): 183-190.
  • 8Mawhin J., Willem M., Multiple solutions of the periodic boundary value problem for some forced pendulumtype equations, J. Diff. Equs., 1984, 52: 264-287.
  • 9Zelati V. C., Periodic solutions of dynamical systems with bounded potential, J. Diff. Equs., 1987, 67:400-413.
  • 10Lassoued L., Periodic solutions of a second order superquadratic system with a change of sign in potential,J. Diff. Equs., 1991, 93: 1-18.

共引文献44

同被引文献7

  • 1周友明.四阶奇异微分方程边值问题正解的存在性及多解性[J].应用泛函分析学报,2006,8(1):36-42. 被引量:6
  • 2Li Y. Multiple sign-changing solutions for fourth-order nonlinear boundary value problems[J]. Nonlinear Analysis, 2007 (67) : 601-608.
  • 3Jiang D, Lin H, Xu X. Nonresonant singular fourth-order boundary value problems[J]. Appl. Math. Letters,2005 (18) :69-75.
  • 4Yao Q. Monotonically iterative method of nonlinear cantilever beam equations[J]. Appl. Math. Comput, 2008(205)1432-437.
  • 5Li Y. Two-parameter nonresonanee condition for the existence of fourth-oeder boundary value problems[J]. Math. Anal. Appl, 2005 (308): 121-128.
  • 6Li Y. On the existence of positive solutions for the bending elastic beam equations[J]. Appl. Math. Comput, 2007(189):821-827.
  • 7赵微,张国伟.非线性奇异三阶微分方程周期边值问题的正解[J].应用泛函分析学报,2009,11(2):158-163. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部