摘要
基于微扰理论并借助于统计缔合流体理论的基本思路,建立了氨基酸和糖水溶液密度的状态方程.计算了甘氨酸、丙氨酸、缬氨酸、氨基丁酸和丝氨酸水溶液体系在4个温度下的密度,以及葡萄糖、果糖、半乳糖、树胶醛糖和木糖水溶液体系在5个温度下的密度.此外采用所建立的方程,不引入任何可调参数,直接对氨基酸在尿素水溶液中的密度进行了预测.关联和预测的结果均令人满意.
Based on perturbation theory and the idea of statistical associating fluid theory, an equation of state is established and is used to calculate the density of amino acid and sugar solutions. In the equation of state the induced dipole and quadrupole interactions between the particles are neglected. Density calculation of glycine, alanine, valine, amino n-butyric acid, serine aqueous solutions at four different temperatures and glucose, fructose, galactose, arabinose and xylose aqueous solutions at five different temperatures are made. In addition, this EOS is used to predict the density of amino acid + urea + H2O systems without any adjustable parameter. Results show that the accuracy of both regression and prediction calculations is high.
出处
《化工学报》
EI
CAS
CSCD
北大核心
1999年第5期644-650,共7页
CIESC Journal
基金
国家自然科学基金重点资助项目(No.29736170).