期刊文献+

非线性发展方程反周期解的边值问题

Anti-periodic Boundary Value Problems with Nonlinear Evolution Equations
下载PDF
导出
摘要 在Hilbert空间中,利用非线性泛函分析中的Leray-Schauder度理论,对含有极大单调映象的非线性发展方程的反周期解的边值问题进行了研究,并将其结果做了推广. Using Leray-Schauder's topology degree theory in a nonlinear analysis,it studies Anti-periodic boundary value problems with nonlinear evolution equations associated with maximal monotone mappings in Hilbert space,and conducts further research into the results obtained.
作者 李玉华
出处 《广东工业大学学报》 CAS 2011年第1期82-85,共4页 Journal of Guangdong University of Technology
关键词 非线性发展方程 极大单调映象 反周期解 LERAY-SCHAUDER度 nonlinear evolution equation maximal monotone mapping anti-periodic solution Leray-Schauder degree
  • 相关文献

参考文献15

  • 1Okochi H.On the existence of periodic solutions to nonlinear abstract parabolic equations[J].J Math Soc,1988(40):541-553.
  • 2Okochi H.On the existence of anti-periodic solutions to a nonlinear evolution equation associated with differential operators[J].J Funct Anal,1990(91):246-258.
  • 3Okochi H.On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains[J].Nonlinear Anal,1990(14):771-783.
  • 4Haraux A.Anti-periodic solutions of some nonlinear evolution equations[J].Manuscripta math,1989(63):479-505.
  • 5Chen Yuqing.Note on Massera's theorem on anti periodic solution[J].Advances in Math Sci and Appl,1999(9):125-128.
  • 6Chen Y Q,Cho Y J,0'Regan D.Antiperiodic solutions for evolution equations with mapping in class(S+)[J].Math Nachr,2005(278):335-362.
  • 7Chen Y Q,Wang X D,Xu H X.Anti-periodic solutions for semilinear evolution equations[J].J Math Anal App1,2002(273):627.636.
  • 8Chen Y Q.Antiperiodic solutions for semilinear evolution equations[J].J Math Anal App1,2006(315):337-348.
  • 9Chen Y Q,J Nieto J,0' Regan D.Antiperiodic solutions for fully nonlinear first-order differential equations[J].Mathematical and Computer Modeling,2007(46):1183-1190.
  • 10Chen Y Q,Cho Y J,Jung J S.Antiperiodic solutions for semilinear evolution equations[J].Mathematical and Computer Modeling,2004(40):1123-1130.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部