摘要
A novel integration-based yield estimation method is developed for yield optimization of integrated circuits.This method tries to integrate the joint probability density function on the acceptability region directly. To achieve this goal,the simulated performance data of unknown distribution should be converted to follow a multivariate normal distribution by using Box-Cox transformation(BCT).In order to reduce the estimation variances of the model parameters of the density function,orthogonal array-based modified Latin hypercube sampling (OA-MLHS) is presented to generate samples in the disturbance space during simulations.The principle of variance reduction of model parameters estimation through OA-MLHS together with BCT is also discussed.Two yield estimation examples,a fourth-order OTA-C filter and a three-dimensional(3D) quadratic function are used for comparison of our method with Monte Carlo based methods including Latin hypercube sampling and importance sampling under several combinations of sample sizes and yield values.Extensive simulations show that our method is superior to other methods with respect to accuracy and efficiency under all of the given cases.Therefore,our method is more suitable for parametric yield optimization.
A novel integration-based yield estimation method is developed for yield optimization of integrated circuits.This method tries to integrate the joint probability density function on the acceptability region directly. To achieve this goal,the simulated performance data of unknown distribution should be converted to follow a multivariate normal distribution by using Box-Cox transformation(BCT).In order to reduce the estimation variances of the model parameters of the density function,orthogonal array-based modified Latin hypercube sampling (OA-MLHS) is presented to generate samples in the disturbance space during simulations.The principle of variance reduction of model parameters estimation through OA-MLHS together with BCT is also discussed.Two yield estimation examples,a fourth-order OTA-C filter and a three-dimensional(3D) quadratic function are used for comparison of our method with Monte Carlo based methods including Latin hypercube sampling and importance sampling under several combinations of sample sizes and yield values.Extensive simulations show that our method is superior to other methods with respect to accuracy and efficiency under all of the given cases.Therefore,our method is more suitable for parametric yield optimization.