期刊文献+

含水介质非均质概化对地下水数值模拟的影响分析 被引量:7

Analysis on influence of aquifer heterogeneous simplification to groundwater numerical modeling
下载PDF
导出
摘要 实际地下水系统的复杂程度远远超出目前人们可以用数学方法准确刻画的程度,地下水模型建立通常依赖于一系列对野外真实情况的假设和近似。由于观测资料的稀疏性以及观测误差等人为因素,导致含水介质非均质性参数分区不能准确地反映实际情况,存在不同程度的概化,便会引起数值模拟结果的不确定性。本文着重探讨了不同程度的含水介质非均质概化对地下水数值模拟中参数识别、降深预报以及风险评估等问题的影响。通过将贝叶斯理论耦合地下水流数值模拟软件MODFLOW,结合单分量自适应Meteropolis采样的马尔可夫链蒙特卡罗方法(SCAM-MCMC),可以用来获取模型参数和降深的贝叶斯后验分布。算例研究的结果表明,该方法对于含水介质非均质概化引起的不确定性能进行系统的量化分析。且借助贝叶斯后验分布对模型预报量能给出全面有效的风险分析,结果可为地下水资源利用和管理提供科学决策依据。 Groundwater modeling commonly relies on a serial of hypothesis and approximations for field reality.Since the real hydrologic systems are far more complex than that we could mathematically characterize,the real conditions could be reflected owing to the lack of the observation data and observation errors and the divisions of the parameters of the heterogeneous aquifer,thus the different kinds of simplification may contribute to the model uncertainty.The impacts of different kinds of simplification to the heterogeneous aquifer are studied for the parameter identification,the drawdown prediction and the risk analysis in the groundwater numerical simulation.The Bayesian algorithm is proposed based on the SCAM-MCMC sampler which is coupled with the groundwater modeling software MODFLOW,and the posterior distribution of the parameters and the drawdown could be obtained.An ideal example is presented to illustrate that this algorithm could quantify the uncertainties which are caused by different kinds of the simplification of the heterogeneous aquifer.The comprehensive and effective risk analysis is also derived from the Bayesian results to draw trade-off curves for the decision making about the exploitation and management of groundwater resources.
出处 《工程勘察》 CSCD 北大核心 2011年第4期34-42,共9页 Geotechnical Investigation & Surveying
基金 国家自然科学基金资助项目(40725010 40672160)
关键词 贝叶斯 MCMC方法 含水介质非均质概化 降深预报 风险分析 Bayesian MCMC(Markov-Chain Monte Carlo) method aquifer heterogeneous simplification drawdown forecast risk analysis
  • 相关文献

参考文献11

  • 1邢贞相,芮孝芳,崔海燕,余美.基于AM-MCMC算法的贝叶斯概率洪水预报模型[J].水利学报,2007,38(12):1500-1506. 被引量:38
  • 2Chib S,Greenberg E.Understanding the metropolis-hastings algorithm. The American Statistician . 1995
  • 3Gilks WR,Richardson S,Spiegelhalter DJ.Markov Chain Monte Carlo in Practice. . 1996
  • 4Neuman,SP.Maximum likelihood Bayesian averaging of alternative conceptual-mathematical models. Stochast Environ Res Risk Assessment . 2003
  • 5H. Haario,E. Saksman,J. Tamminen.An adaptive Metropolis algorithm. Bernoulli . 2001
  • 6Smith AFM,Roberts GO.Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods (with discussion). Journal of the Royal Statistical Society Series B,Statistical Methodology . 1993
  • 7Gelman A G.Efficient Metropolis jumping rules. Bayesian StatisticsV . 1996
  • 8Beven K J,Binley A M.The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes . 1992
  • 9王建平,程声通,贾海峰.基于MCMC法的水质模型参数不确定性研究[J].环境科学,2006,27(1):24-30. 被引量:44
  • 10陆乐,吴吉春,陈景雅.基于贝叶斯方法的水文地质参数识别[J].水文地质工程地质,2008,35(5):58-63. 被引量:22

二级参考文献54

共引文献89

同被引文献76

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部