摘要
作者提出了多角形区域上不连续介质问题▽.(γ(x)▽u(x))=0基于直接边界积分方程的机械求积法.作者首先导出了多角形不连续介质问题的等价直接边界积分方程组,然后采用三角周期变换,去除边界积分方程组解在角点的奇异性,利用Sidi-Israeli求积法则,构造机械求积法.数值结果表明该算法简单、有效,计算量低且具有高精度.
This paper presents a mechanical quadrature method based on the direct boundary integral equations(BIE) for the discontinuous media problem △↓(γ(x)△↓u(x))=0 on polygonal regions. First, the authors suggest an equivalent direct BIE for the discontinuous media problem, and then use triangle periodical variable transformation to remove the singularity of the solutions of the BIE at the corners of the boundary. Finally we obtain the mechanical quadrature methods by using the Sidi-Israeli's rule. Numercial results show that our methods possess high accuracy, less computational complexity, and the algorithm is very simple.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第2期253-259,共7页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(10671136)
天元数学基金(10726018)
关键词
多角形
不连续介质问题
直接边界积分方程
机械求积法
polygonal regions, discontinuous media problem, direct boundary integral equations, mechanical quadrature method