期刊文献+

曲边多角形区域上不连续介质问题基于直接边界积分方程的机械求积法 被引量:1

Mechanical quadrature methods for discontinuous media problem based on the direct boundary integral equations on polygonal regions
原文传递
导出
摘要 作者提出了多角形区域上不连续介质问题▽.(γ(x)▽u(x))=0基于直接边界积分方程的机械求积法.作者首先导出了多角形不连续介质问题的等价直接边界积分方程组,然后采用三角周期变换,去除边界积分方程组解在角点的奇异性,利用Sidi-Israeli求积法则,构造机械求积法.数值结果表明该算法简单、有效,计算量低且具有高精度. This paper presents a mechanical quadrature method based on the direct boundary integral equations(BIE) for the discontinuous media problem △↓(γ(x)△↓u(x))=0 on polygonal regions. First, the authors suggest an equivalent direct BIE for the discontinuous media problem, and then use triangle periodical variable transformation to remove the singularity of the solutions of the BIE at the corners of the boundary. Finally we obtain the mechanical quadrature methods by using the Sidi-Israeli's rule. Numercial results show that our methods possess high accuracy, less computational complexity, and the algorithm is very simple.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期253-259,共7页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10671136) 天元数学基金(10726018)
关键词 多角形 不连续介质问题 直接边界积分方程 机械求积法 polygonal regions, discontinuous media problem, direct boundary integral equations, mechanical quadrature method
  • 相关文献

参考文献9

二级参考文献17

  • 1Bialecki R, Nowak A J. Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions[J]. Appl. Math. Model, 1981, 5:417-421.
  • 2Brebbia C A, Telles J C F, Wrobel L C. Boundary element technique[M]. Berlin/Heidelbery/New York:Springer Verlag, 1984.
  • 3Brum M, Capuani D, Bigoni D. A boundary element technique for incremental nonlinear elasticity (part I: Formulation)[J]. Computer Methods Appl. Mech. Engrag, 2003, 192:2461-2479.
  • 4Kelmnnson M A. Solution of nonlinear elliptic equation with boundary singularities by an integral equation method[J]. J. Comut. Phys, 1984, 56:244-283.
  • 5Ruotsalainen K, Wendland W. On the boundary element method for some nonlinear boundary value problems[J]. Numer. Math, 1988, 53:299-314.
  • 6Sidi A, Israrli M. Quadrature methods for periodic singular Fredholm integral equation[J]. J. Sci. Comp, 1988, 3:201-231.
  • 7Anselone P M. Collectively compact operator approximation theory[M]. New Jersey:Prentice-Hall, 1971.
  • 8Ortega J M, Kheinboldt W C. Iterative solution of nonlinear equations in several variables[M]. New York:Academic press, 1970.
  • 9Davis D. Methods of numerical integration[M]. New York:Academic Press, 1984.
  • 10Chatelin F. Spectral approximation of linear operator[M]. New York:Academic press, 1983.

共引文献13

同被引文献9

  • 1Deimling K. Nonlinear Volterra integral equations of the first kind [J].Nonlinear Anal, 1995, 25: 951.
  • 2Brunner H. One hundred years of Volterrra integral equation of the first kind[J]. Appl Numer Math, 1997, 24: 83.
  • 3Navot J. A further extension of Euler-Maclaurin summation formula [J]. J Math Phys, 1962, 41: 155.
  • 4Lyness J N, Ninham B W. Numerical quadrature and asymptotic expansion [J]. Math Comput, 1967, 21: 162.
  • 5Lamm P K, Elden L. Numerical solution of first-kind Volterra equations by sequential Tikhonov regularization [J]. SIAM J Numer Anal, 1997, 34(4) : 1432.
  • 6Gorenflo R, Yamamoto M. Operator theoretic treatment of linear abel integral equations of first kind [J]. Japan J Indust Appl Math, 1999, 16: 137.
  • 7Liu Y P, LU T. High accuracy combination algorithm and a posteriori error estimation for solving the first kind Abel integral equations [J]. Appl Math Comp, 2006, 178:441.
  • 8Liu Y P, LU T. Mechanical quadrature methods and their extrapolation for solving first kind Abel integral equations [J]. J Comp Appl Math, 2007, 201: 300.
  • 9张麟,张洋,吕涛.并行解Volterra型积微方程的高精度算法[J].四川大学学报(自然科学版),2010,47(5):957-963. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部