期刊文献+

偏序集乘积的拓扑与拓扑乘积 被引量:2

The topologies of products and the topological products of posets
原文传递
导出
摘要 作者讨论了偏序集乘积的下拓扑、Scott拓扑及Lawson拓扑与它们各自对应的拓扑集积之间的关系,给出了乘积的下拓扑空间等于下拓扑乘积空间和乘积的Lawson拓扑空间等于Lawson拓扑乘积空间的充分必要条件,修正了专著《Continuous Lattices and Domains》的若干不正确的结论. In this paper, the authors investigate the realtions among the lower topology, the Scott topology, the Lawson topology on the product of posets and their corresponding topological products, and obtain the suffcient and necessary conditions such that the corresponding topologies are equal to each other.
作者 陈大江 寇辉
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期267-269,共3页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10871137) 教育部新世纪优秀人才支持计划(070576)
关键词 下拓扑 SCOTT拓扑 LAWSON拓扑 lower topology, Scott topology, Lawson topology
  • 相关文献

参考文献10

  • 1Scott D, Outline of a mathematical theory of computation[J]. 4th Annual Princeton Conference on Information Sciences and Systems, 1970: 169.
  • 2Scott D. Data types as lattices[J]. SIAM J Computing, 1976, 5: 522.
  • 3Plotkin G. A powerdomain construction[J]. SIAM J Computing, 1976, 5: 452.
  • 4Abramsky S, Jung A. Domain theory[M]. Oxford.. Clarendon Press, 1994.
  • 5Gierz G, Hofmann K H, Keimel K, et al. Continuous lattices and domains[M]. Cambridge: Cambridge University Press, 2003.
  • 6Jung A. Cartesian closed categories of domains[J]. Amsterdam.. CWI Tracts,1989, 66: 35.
  • 7Kou H, Luo M K. The largest topologically cartesian closed categories of domains as topological spaces [C]//Keimel K, Zhang G Q, Liu Y M, et al. Domains and processes[C]. New York: Kluwer Academic Publishers, 2001.
  • 8Mislove M. Topology, domain theory and "theoretical computer science[J]. Topology and its Applications, 1998, 89: 3.
  • 9Lawsom J M, Mislove M. Domain theory and topology[C]//North-Holland : Elsevier Sei Publ, 1990.
  • 10寇辉.完备半格范畴的反射与余反射子范畴[J].四川大学学报(自然科学版),1998,35(4):495-499. 被引量:5

共引文献4

同被引文献38

  • 1Scott D. Outline of a mathematical theory of compu- tation[J]. 4th Annual Princeton Conference on Infor- mation Sciences and Systems, 1970: 169.
  • 2Scott D, Data types as lattices[J]. SIAM J. Compu- ting, 1976, 5: 522.
  • 3Scott D S. Domains for denotational semantics[C] // Nielson M, Schmidt E M. Internat. Colloq. on Au- tomata, Languages and Programs, Lecture Notes in Computer Science, Vol. 140, Berlin: Springer, 1982.
  • 4Abramsky S, Jung A. Domain theory[C]// Abram- sky S, et al. Handbook of Logic in Computer Sci- ence. Oxford: Oxford University Press, 1994.
  • 5Chen Y, Jung A. A logical approach to stable do- mains[J]. Theoretical Computer Science, 2006, 368: 124.
  • 6Gierz G, Lawson J D. Generalized continuous and hypereontinuous lattices [J]. The Rocky Mountain Journal of Mathematics, 1981, 11: 271.
  • 7Heckmann R. An upper power domain construction in terms of strongly compact sets[J]. Berlin/New York : Springer-Verlag, 1991.
  • 8Jung A. Cartesian closed categories of domains[M]. Amsterdam: CWI Tracts, 1989.
  • 9Lawson J. The duality of continuous posets[J]. Houston J Math,1979, 5: 357.
  • 10Lawson J. Spaces of maximal points[J]. Math Struet In Comp Sei, 1997, 7: 543.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部