期刊文献+

拟南芥bZIP1转录因子通过与ABRE元件结合调节ABA信号传导 被引量:25

Arabidopsis bZIP1 Transcription Factor Binding to the ABRE Cis-Element Regulates Abscisic Acid Signal Transduction
下载PDF
导出
摘要 ABA作为一种重要的植物激素和生长调节剂,介导了高等植物在营养生长阶段对各种外界环境的响应和适应。bZIP类转录因子可以通过ABA依赖途径和ABA非依赖途径调节植物的生长发育和对非生物胁迫的耐性。本研究通过AtbZIP1T-DNA插入突变的拟南芥植株ko-1(SALK_059343)和ko-2(SALK_069489C)在ABA处理后的表型实验,验证了AtbZIP1参与ABA依赖的信号传导通路。采用"三引物法",分别在DNA水平和RNA水平通过PCR和RT-PCR验证了AtbZIP1基因在拟南芥突变体中的沉默效果。定量分析数据表明,在种子萌发阶段,经过0.6μmolL–1ABA和0.8μmolL–1ABA处理后,AtbZIP1缺失突变体拟南芥植株萌发率和叶片展开/绿色率比野生型植株高,在幼苗生长阶段,经过50μmolL–1ABA处理后,AtbZIP1缺失突变体拟南芥植株根长比野生型植株长。为了确定AtbZIP1基因参与ABA信号传导是否依赖于ABRE元件,在大肠杆菌中表达了AtbZIP1HIS6融合蛋白,并设计了核心序列为CACGTG的ABRE元件。凝胶阻滞电泳结果表明AtbZIP1融合蛋白可以与ABRE元件特异性结合。半定量RT-PCR分析表明,AtbZIP1基因的缺失改变了下游的ABA响应基因的表达。该结果表明,AtbZIP1可以通过与ABRE元件结合调节植物对ABA处理的敏感性和下游ABA响应基因的表达,从而参与植物的ABA信号传导通路。 Abscisic acid (ABA) is a phytohormone and mediates the response and adaptation of higher plants to various environmental stresses during vegetative growth. The basic leucine zipper (bZIP) transcription factors are also important regulators of plant development and abiotic resistance, acting through either ABA-dependent or ABA-independent pathways. In this study, we investigated and characterized the involvement of the AtbZIP1 gene in plant responsiveness to ABA. As confirmed by PCR and RT-PCR, AtbZIP1 has been silenced in mutant Arabidopsis ko-1 (SALK_059343) and ko-2 (SALK_069489C). The AtbZIP1 knockout plants demonstrated reduced sensitivity to ABA both at the seed germination and seedling stage with improvements in rates of germination, leaf opening/greening, and primary root length. In order to investigate whether the regulation of AtbZIP1 mediated ABA responsiveness depended on the ABA-responsive elements (ABRE), we expressed the AtbZIP1 HIS6 fusion protein in E. coli and found that the AtbZIP1 HIS6 specifically bound to the ABRE cis-elements. Semi-quantitive RT PCR showed that AtbZIP1 disruption altered expressions of some ABA responsive genes, such as NCED3, RD22, KIN1, and RD29A. Our results indicated that AtbZIP1 regulates abscisic acid signal transduction by binding to the ABREs and altered the expressions of the ABA responsive genes.
出处 《作物学报》 CAS CSCD 北大核心 2011年第4期612-619,共8页 Acta Agronomica Sinica
基金 国家自然科学基金项目(30570990) 国家转基因生物新品种培育重大专项(2008ZX08004) 黑龙江省重大科技攻关项目(GA06B103) 东北农业大学创新团队项目(CXT004)资助
关键词 BZIP 转录因子 ABA信号传导 ABRE元件 ABA响应基因 AtbZIP1 Transcription factor ABA signal transduction ABRE ABA responsive genes
  • 相关文献

参考文献2

二级参考文献82

  • 1孔杰,刘萍,张岩.PCR技术在对虾病原检测中的应用[J].生物工程进展,1994,14(6):43-46. 被引量:5
  • 2Alonso, R., Onate-Sanchez, L., Weltmeier, E, Ehlert, A., Diaz, I., Dietrich, K., Vicente-Carbajosa, J., and Droge-Laser, W. (2009). A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell.
  • 3Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and Leon, R (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14, 2085-2096.
  • 4Armstrong, G.A., Weisshaar, B., and Hahlbrock, K. (1992). Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell. 4, 525-537.
  • 5Baena-Gonzalez, E., and Sheen, J. (2008). Convergent energy and stress signaling. Trends Plant Sci. 13, 474-482.
  • 6Baena-Gonzalez, E., Rolland, F., Thevelein, J.M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature. 448, 938-942.
  • 7Bechtold, N., and Pelletier, G. (1998). In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259-266.
  • 8Biasing, O.E., Gibon, Y., Gunther, M., Hohne, M., Morcuende, R., Osuna, D., Thimm, O., Usadel, B., Scheible, W.R., and Stitt, M. (2005). Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell. 17, 3257-3281.
  • 9Bracha-Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S., and Ohad, N. (2004). Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J. 40, 419-427.
  • 10Chen, S., Tao, L., Zheng, L.-R., Vega-Sanchez, M., and Wang, G.L. (2006a). A highly efficient transient protoplast system for analyzing defense gene expression and protein-protein interactions in rice. Mol. Plant Pathol. 7, 417-427.

共引文献27

同被引文献205

引证文献25

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部