期刊文献+

Apriori算法用于频繁子图挖掘的改进方法 被引量:4

Improved method based on Apriori-based frequent sub-graph mining algorithm
下载PDF
导出
摘要 AGM算法最早将Apriori思想应用到频繁子图挖掘中。AGM算法结构简单,以递归统计为基础,但面临庞大的图数据集时,由于存在子图同构的问题,在生成候选子图时容易产生很多冗余子图,使计算时间开销很大。基于AGM算法,针对候选子图生成这一环节对原算法进行改进,减少了冗余子图的生成,使改进后的算法在计算时间上具有高效性;测试了在不同最小支持度情况下改进方法的时间开销。实验结果表明改进算法比原算法缩短了计算时间,提高了频繁子图的挖掘效率。 AGM(Apriori-based Graph Mining) algorithm is the first one to put the Apriori idea into the use of frequent sub-graph mining.This algorithm is simple and based on recursion statistics.But graph data set is very large and sub-graph isomorphism problem is available,when candidate subgraphs are generated and so many redundant sub-graphs would be generated,which makes the high cost in computing time.An improved method based on AGM is proposed to get the reduction of redundant sub-graphs and make the new algorithm more efficient in computing time,compared to AGM algorithm.This paper examines the computing time for various minimum support,the result of which proves that the improved algorithm cuts down the computing time,compared to AGM algorithm,improving the efficiency of frequent sub-graph mining.
作者 陈立宁 罗可
出处 《计算机工程与应用》 CSCD 北大核心 2011年第10期113-117,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.10926189 No.10871031 湖南省科技计划项目(No.2008FJ3015)~~
关键词 频繁子图挖掘 AGM算法 子图同构 frequent sub-graph mining Apriori-based Graph Mining(AGM)algorithm sub-graph isomorphism
  • 相关文献

参考文献8

二级参考文献67

共引文献71

同被引文献45

  • 1车君华,谭建荣,冯毅雄,邵雷.产品配置设计的多层次映射求解模型研究[J].中国机械工程,2006,17(8):849-853. 被引量:11
  • 2王德兴,胡学钢,刘晓平,王浩.改进购物篮分析的关联规则挖掘算法[J].重庆大学学报(自然科学版),2006,29(4):105-107. 被引量:12
  • 3王柏,吴巍,徐超群,吴斌.复杂网络可视化研究综述[J].计算机科学,2007,34(4):17-23. 被引量:44
  • 4刘勇,李建中,朱敬华.一种新的基于频繁闭显露模式的图分类方法[J].计算机研究与发展,2007,44(7):1169-1176. 被引量:10
  • 5HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 6Gatos B, Mantzaris S, Perantonis S, et al. Automatic page anal- ysis of a digital library from newspaper archives [ J ]. Interna- tional Journal of Digital Librarles,2003,3( I ) :77-84.
  • 7Aiello M, Monz C, Todoran L, et 81. Document understanding for a broad class of documents [ J ]. International Journal on Document Analysis and Recognition ,2002,5 (1) :I-16.
  • 8Wang Peiji,Shi Lin,Bai Jinniu,et al. Mining Association Rules Based on Apdori Algorithm and Application [ C]//Proc. of 2009 International Forum on Computer Science-Technology and Applications. Is. 1. ] :Is. n. ] ,2009:141-143.
  • 9Deshpande M, Kuramochi M, Karypis G. Frequent sub- structure based approaches for classifying chemical com- pounds[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(8): 1036-1050.
  • 10Horvath T, Garner T, Wrobel S. Cyclic pattern kernels for predictive graph mining[C]// Proceedings of the tenth ACM SIGKDD international conference on Knowl- edge discovery and data mining. Seattle:Association for Computing Machinery, 2004.. 158-167.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部