期刊文献+

文本挖掘技术在科研信息自动建议中的应用 被引量:2

Study on science and research information’s auto-suggestion method based on text mining
下载PDF
导出
摘要 研究了科研期刊文献文本数据的特点,将文本挖掘技术用于对科研期刊文本数据的分析和处理中,提出了基于文本挖掘技术的科研信息自动建议系统。结合国内信息领域较有影响的3种期刊2007全年的期刊文章,进行了实例仿真。 This paper studies the characteristics of text data from research journal literature,applies the popular text mining technique into analyzing and processing research literature text data,and proposes research information’s auto-suggestion system.Case study on journal documents is discussed.
作者 李芳 朱群雄
出处 《计算机工程与应用》 CSCD 北大核心 2011年第10期118-119,130,共3页 Computer Engineering and Applications
基金 国家自然科学基金 国家高技术研究发展计划(863)No.2006AA04Z184~~
关键词 文本挖掘 自动建议 文本建模 聚类 text mining auto-suggestion text modeling clustering
  • 相关文献

参考文献4

  • 1谌志群,张国煊.文本挖掘研究进展[J].模式识别与人工智能,2005,18(1):65-74. 被引量:49
  • 2Lee D D, Seung H S.Algorithms for non-negative matrix factorization[J].Advances in Neural Information Processing Systems, 2000,13:556-562.
  • 3Zhu Haiping,Zhang Huajie, Yu Yong.Deeper semantics goes a long way:Fuzzified representation and matching of color descriptions for online clothing search[C]//Proceedings of the 7th Conference on Web Information Systems (WISE), Wuharl, China, 2006 : 23-26.
  • 4Pons-Porrata A, Berlanga-Llavori R, Ruiz-Shulcloper J.Topic discovery based on text mining techniques[J].Information Processing and Management, 2007,43 : 752-768.

二级参考文献80

  • 1Lin D, Pantel P. DIRT-Discovery of Inference Rules from Text. In: Proc of ACM SIGKDD Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001. 323-328.
  • 2Harris Z. Distributional Structure. In: Katz J J, ed. The Philosophy of Linguistics. New York, USA: Oxford University Press, 1985, 26-47.
  • 3van Rijsbergen C J. Information Retrieval. 2nd edition. London, UK: Buttersworth, 1989.
  • 4Cutting D R, Karger D R, Pedersen J O, Tukey J W. Scatter/ Gather: A Cluster-Based Approach to Browsing Large Document Collections. In: Proc of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Copenhagen, Denmark, 1992, 318-329.
  • 5Zamir O, Etzioni O, Madani O, Karp R M, Fast and Intuitive Clustering of Web Documents, In: Proc of the 3rd International Conference on Knowledge Discovery and Data Mining, San Diego, USA, 1997, 287-290.
  • 6Mine, Tsunenori L U, Shimiao A , etal, A Text Mining System DIREC; Discovering the Relationships between Keywords by Filtering, Extracting and Clustering, In: Proc of the 5th Joint Conference on Knowledge-Based Software Engineering, Maribor, Slovenia, 2002, 65-69.
  • 7Rajaraman K, Tan A H. Topic Detection. Tracking, and Trend Analysis Using Self-Organizing Neural Networks. In: Proc of Pacific-Asia Conference on Knowledge Discovery and Data Mining. Hong Kong, China, 2001, 102-107.
  • 8Han E H. Karypis G, Kumar V, et al. Clustering Based on Association Rule Hypergraphs, In; Proc of the SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Arizona, USA, 1997, 9-13.
  • 9Bingham E. Topic Identification in Dynamical Text by Extracting Minimum Complexity Time Components. In: Proc of the 3rd International Conference on Independent Component Analysis and Blind Signal Separation. San Diego, USA, 2002, 546-551.
  • 10Montes-y-Gómez M, Gelbukh A, L6pez-L6pez A. Discovering Ephemeral Associations among News Topics. In: Proc of IJCAI Workshop on Adaptive Text Extraction and Mining. Seattle, USA, 2001, 491-500.

共引文献48

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部