期刊文献+

基于区域搜索与矩特征分类的文本精确定位 被引量:1

Precise text location based on region search and invariable moment classification
下载PDF
导出
摘要 提出一种基于特定颜色分布区域搜索的文本定位方法,利用文字通常呈现为单一的颜色被不同的背景颜色包围的特点,以单一的颜色作为依据,搜索被包围的文本候选区域;然后,在区域合并与分离算法的基础上,利用不变矩特征和支持向量机(SVM)分类器实现候选区域的进一步筛选。与一般基于形状和纹理的方法相比,由于采用了文字颜色的空间分布特征,避开了文本与其他元素的形状和纹理特征交错问题,保证了算法适应性。基于精确区域搜索的不变矩特征提取,降低了分类器的训练难度,使分类器能很好地适应背景和文字尺寸变化以及部分遮挡等复杂情形。实验表明,该方法具有较好的复杂环境适应性和非常高的准确性。 A new method for text location in images based on searching regions of specified color distribution is brought forward.Because of text usually presents as monadic color and is surrounded by different background colors,new method searches the blocks in an image with a monadic color to find candidate text regions which is surrounded by other different colors.After regions merging and splitting,moment invariant features and Support Vector Machine(SVM) classification are adopted to filter the candidate regions ulteriorly.Profited from using features in spatial distribution of color,the new method overcomes the problem caused by features overlapping in shape and texture between texts and other elements,and also guarantees its flexibility.Furthermore,feature extraction based on precise region search remarkably decreases the difficulty with training classifier.That makes the SVM classifier season with variations of background and text size,partly shielded and other complex conditions easily.Experiments indicate that the method has preferable environment suitability and high accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第10期164-168,共5页 Computer Engineering and Applications
基金 湖南省科技厅计划项目(No.2008GK3131)
关键词 文本区域搜索 文本定位 不变矩特征 支持向量机 text region search text location moment invariant features Support Vector Machine(SVM)
  • 相关文献

参考文献14

  • 1Dimilrova N,Zhang H J, Shahraray B,et al.Applications of video content analysis and retrieval[J].IEEE Multimedia,2002,9(3) : 43-55.
  • 2Wang Y, Liu Y, Huang J C.Multimedia content analysis using both audio and visual clues[J].IEEE Signal Processing,2000, 17 (6) : 12-36.
  • 3Liehart R, Wernicke A.Localizing and segmenting text in images and videos[J].Circuits and Systems for Video Technology, IEEE Transactions, 2002,12 (4) : 256-268.
  • 4Jain A K, Yu B.Automatic text location in images and video frames[J].Pattem Recognition, 1998,31(2):2055-2076.
  • 5Zhong Y, Karu K, Jain A K.Locating text in complex color images[JJ.Pattern Recognition, 1995,28(10) : 1523-1535.
  • 6Kim K C,Byun H R, Song Y J,et al.Scene text extraction in natural scene images using hierarchical feature combining and verifieation[C]//Proceedings of the 17th International Conference on Pattern Recognition(ICPR'04),2004,2:679-682.
  • 7Kim K I, Jung K, Kim J H.Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (12) : 1631-1639.
  • 8Jung C,Liu Q,Kim J.A new approach for text segmentation using a stroke filter[J].IEEE Signal Processing, 2008,88:1907-1916.
  • 9Liu C, Wang C, Dai R.Text detection in images based on unsupervised classification of edge-based features[C]//Proc of the 2005 Eight International Conference on Document Analysis and Recognition(ICDAR' 05),Washton,USA,2005 : 610-614.
  • 10Hu M K.Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962,8(2) : 179-187.

二级参考文献15

  • 1WANG KONG-QIAO, KANGAS J A.. Character location in scene images from digital camera [J]. Pattern Recognition, 2003, 36 (10) : 2287 -2299.
  • 2ZHANG DONG-QING, CHANG S-F. Learning to detect scene text using a highex-order MRF with belief propagation [ C]//Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'04), Washington: IEEE Computer Society, 2004, 6:I01 - 107.
  • 3KIM K C, BYUN H R, SONG Y J, et al. Scene text extraction in natural scene images using hierarchical feature combining and verification [C]// Proceedings of the 17th International Conference on Pattern Recognition (ICPR'04). Cambridge: IEEE Computer Society, 2004, 2:679-682.
  • 4LIU CHUN-MEI, WANG CHUN-HENG, DAI RU-WEI. Text detecion in images based on unsupervised classification of edge-based features [C]//Proceedings of the 2005 International Conference on Document Analysis and Recognition (ICDAR'05). 2005:610 - 614.
  • 5CHUN B T, BAE Y, KIM T Y. Automatic text extraction in digital videos using FFT and neural network [ C]// Proceedings of the IEEE International Fuzzy Systems Conference. Washington: IEEE Press, 1999, 2:1112 -1115.
  • 6KIM K I, JUNG K, KIM J H. Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12) : 1631 - 1639.
  • 7JEONG K, JUNG K, KIM E Y, et al. Neural network-based text Iocation in color images [ J]. Pattern Recognition Letters, 2001, 22 (14): 1503-1515.
  • 8WEINMAN J, HANSON A, McCALLUM A. Sign detection in natural images with conditional random fieIds[ C]// Proceedings of IEEE International Workshop on Machine Learning for Signal Processing. Washington: IEEE Press, 2004:549-558.
  • 9MANCAS-THILLOU C, GOSSELIN B. Color text extraction from camerabased images-the impact of the choice of the clustering distance [ C]//Proceedings of the International Conference Document Analysis Recognition. Washington: IEEE Press, 2005:312 -316.
  • 10XU YANG, ZHANG XUE-DONG. Gabor filterbank and its application in the fingerprint texture analysis [ C]//Proceedings of the Sixth International Conference On ParaUeI and Distributed Computing, Applications and Technologles (PDCAT'05). Washington: IEEE Press, 2005:829-831.

共引文献1

同被引文献8

  • 1Jung Keechul, Kim Kwang. In : Jain Anil K. Text information extrac- tion in images and video:a survey. Pattern Recognition ,2004;37 (5) : 977-997.
  • 2Li Huiping, Doermann D, Kia O. Automatic text detection and track-ing in digital video. IEEE Transactions on Image Processing,2000;9 (1) :147-156.
  • 3Jung Keechul. Neural network-based text location in color images. Pat- tern Recognition Letters,2001 ;22 : 1503-1515.
  • 4Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007;315(5814) :972-976.
  • 5Lyu M R, Song J Q, Cai M. A comprehensive method for multilin- gual video text detection, localization, and extraction. IEEE Transon CSVT, 2005 ;15(2) :243-255.
  • 6潘道远,宋顺林.基于多方法融合的文本定位算法的研究[J].计算机应用与软件,2010,27(6):236-238. 被引量:4
  • 7易剑,彭宇新,肖建国.基于颜色聚类和多帧融合的视频文字识别方法[J].软件学报,2011,22(12):2919-2933. 被引量:22
  • 8李盼池,宋考平,杨二龙.基于量子门线路的量子神经网络模型及算法[J].控制与决策,2012,27(1):143-146. 被引量:13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部