摘要
n元一阶相关免疫对称函数的构造等价于方程sum C_(n-1)~ix_i from i=0 to n-1=sum C_(n-1)~ix_(i+1) from i=0 to n-1在二元域上的求解。通过求解与其等价的方程C_(n-1)~0y_0+sum (C_(n-1)~i-C_(n-1)^(i-1))y_i=0 from i-1 to s构造了一阶相关免疫对称函数,并在两种情形下给出了具体的构造和计数。
The construction of symmetric correlation-immune functions with n variables is equivalent to the solution in thebinary field for the eqution sum Cn-1^ixi from i=0 to n-1=sum Cn-1^ixi+1 from i=0 to n-1.When solving the equivalent equation Cn-1^0y0+sum(Cn-1^i-Cn-1^i-1)yi=0 from i-1 to s of the linear eqution,first order symmetric corrrelation-immune function is constructed.The lower bound of enumeration of symmetric correlation-immune functions with first order is also given in two cases.
出处
《计算机工程与应用》
CSCD
北大核心
2011年第11期84-85,193,共3页
Computer Engineering and Applications
基金
安徽省高校青年教师科研资助计划项目(No.2008jql074)
关键词
布尔函数
一阶相关免疫函数
对称函数
Boolean function
first order correlation-immune function
symmetric function