期刊文献+

改进的增量奇异值分解协同过滤算法 被引量:6

Improved algorithm of incremental singular value decomposition collaborative filtering
下载PDF
导出
摘要 推荐系统作为一种程序算法,是通过度量用户对给定商品的的喜好程度做个性化推荐。广泛地说,推荐系统试图总结出用户的个人喜好,并在用户和商品之间建立一种关系模型。与其他奇异值分解方法相比,改进的增量奇异值分解协同过滤算法基于一系列评分值对用户-商品矩阵进行分解,每次产生一对当前最重要的特征向量。算法有着最小的内存需求,扩展性高,特别适合处理大规模数据集;算法的有效性在Netflix数据集上得到了验证。 As a kind of programs and algorithms,recommendation systems provide personalized recommendations by measuring the preference levels of users(customers)on the given commodities.More broadly,recommender systems attempt to profile user preferences and model the interaction between users and products.Compared with other singular value decomposition methods,the improved incremental singular value decompositon allows the singular value decomposition of a user-item rating matrix to be learned based on single observation presented serially,and produces singular vector pairs one at a time,each time forms the most significant one at present.The algorithm has minimal memory requirements,high scalability and is particularly suitable for handling large data sets.The technique is demonstrated on the Netflix dataset.
作者 顾晔 吕红兵
出处 《计算机工程与应用》 CSCD 北大核心 2011年第11期152-154,共3页 Computer Engineering and Applications
关键词 奇异值分解 推荐系统 协同过滤 singular value decomposition recommender system collaborative filtering
  • 相关文献

参考文献11

  • 1Adomavicius G, Tuzhilin A.Towards the next generation of recommender systems:A survey of the state-of-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering, 2005,17 (6) : 734-749.
  • 2Goldberg D,Nichols D, Old B M, et al.Using collaborative filtering to weave an information tapestry[J].Commtmications of the ACM, 1992,35:61-70.
  • 3Herlocker J L, Konstan J A, Borchers A, et aLAn algorithmic framework for performing collaborative filtering[C]//Proceedings of the 22rid ACM SIGIR Conference on Information Retrieval, 1999:230-237.
  • 4Sarwar B, Karypis G, Konstan J, et al.Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on the World Wide Web,2001:285-295.
  • 5Linden G, Smith B, York J.Amazon.com recommendations: Item-to-item collaborative filtering[J].IEEE Internet Computing, 2003,7: 76-80.
  • 6Berry M W, Dumais S T, O' brian G W.Using linear algebra for intelligent information retrieval[J].SIAM Review, 1995,37(4).
  • 7Goldberg K, Roeder T, Gupta D, et al.Eigentaste: A constant time collaborative filtering algorithm[J].Information Retrieval, 2001,4:133-151.
  • 8Sarwar B M, Karypis G, Konstan J A, et al.Application of dimensionality reduction in recommender system-a case study[C]// Proceedings of Confrence on WEBKDD, 2000.
  • 9Kim D,Yum B.Collaborative filtering based on iterative principal component analysis[J].Expert Systems with Applications, 2005,28: 823-830.
  • 10Deerwester S, Dumais S,Fumas G. W, et al.Indexing by latent semantic analysis[J].Journal of the American Society for Information Science, 1990,41 (6) : 391-407.

同被引文献68

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3张海燕,丁峰,姜丽红.基于模糊聚类的协同过滤推荐方法[J].计算机仿真,2005,22(8):144-147. 被引量:25
  • 4李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 5张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:196
  • 6LINDEN G,SMITH B,YORK J.Amazon,com recom-mendations:Item-to-item collaborative filtering [ J] .IEEE Internet Computing,2003,7(1):76-80.
  • 7龙舜,蔡跳,林佳雄.一个基于演化关联规则挖掘的个性化推荐模型[J].暨南大学学报:自然科学版,2012,33(3):264-267.
  • 8YEHUDA K,ROBERT B,CHRIS V.Matrix factoriza-tion techniques for recommender systems[ J].Computer,2009,42(8):30-37.
  • 9SHAN H,BANERJEE A.Generalized probabilistic ma-trix factorizations for collaborative filtering [ C] // Proceed-ings of 2010 IEEE 10th International Conference on Datamining.Piscataway:IEEE Press,2010:1025-1030.
  • 10THAKUR S S,SING J K.Online product prediction andrecommendation using probability graphical model andcollaborative filtering:A new approach[ C] //Proceedingsof 2011 Recent Advances in Intelligent ComputationalSystems.Piscataway:IEEE Press,2011:151-156.

引证文献6

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部