期刊文献+

面向图像数据集的高斯过程分类 被引量:1

Gaussian process classification for image datasets
下载PDF
导出
摘要 高斯过程分类是近年机器学习领域引起广泛关注的一类有监督的学习算法。该算法在高斯过程的先验假设下,以后验概率最大化的为目标,获得对新样本的预测值及属于该值的概率。针对图像数据的特性,提出一种将高斯过程应用于图像分类的方法,同时在此基础上给出对图片进行排序的一种方案。在公开的图像数据集上进行了实验,并与支持向量机分类器进行对比,证实了其有效性,为改进图像分类技术提供一条可供参考的途径。 Gaussian process classification receives increased attention in the machine learning community over the past decade.It maximizes the posterior probability based on the Gaussian process prior assumption and obtains predictive probability on unlabeled samples.Implemented Gaussian process method for image classification is proposed in this paper and a strategy is given for image ranking.The algorithm is tested on several well-known object category datasets.Compared with those produced by support vector machines,it verifies the effectiveness of the proposed method and provides a new approach to improve the image classification.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第11期160-163,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.61070033 广东省自然科学基金重点项目(No.9251009001000005) 广东高校优秀青年创新人才培育项目(No.LYM09068)~~
关键词 高斯过程 图像分类 模式识别 机器学习 Gaussian process image classification pattern recognition machine learning
  • 相关文献

参考文献10

  • 1Vailaya A, Figueiredo M A T, Jain A K, et al.Image classifica- tion for content-based indexing[J].IEEE Transactions on Image Processing, 2001,10 ( 1 ) : 117-130.
  • 2Datta R, Joshi D, Li Jia, et al.Image retrieval: Ideas, influences, and trends of the new age[J].ACM Computing Surveys,2008,40 (2) : 1-60.
  • 3Luo J,Savakis A E,Singhal A.A Bayesian network-based frame- work for semantic image understanding[J].Pattem Recognition, 2005,38 (6) : 919-934.
  • 4Permutera H, Francosb J, Jermync I.A study of Gaussian mixture models of color and texture features for image classification and segmentation[J].Pattern Recognition, 2006,39(4) : 695-706.
  • 5Li J, Najmi A, Gray K M.Image classification by a two-dimensional hidden Markov model[J].IEEE Transactions on Signal Processing, 2000,48 (2) : 517-533.
  • 6Li J, Wang J Z.Automatic linguistic indexing of pictures by a statistical modeling approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9) : 1075-1088.
  • 7Chapelle O, Flaffner P, Vapnik V N.SVMs for histogram-based image classification[J].IEEE Transactions on Neural Networks, 2002,10(5) : 1055-1064.
  • 8Rasmussen C E, Williams C K I.Gaussian processes for machine leaming[M/OL].Cambridge: MIT Press, 2006.http://www. gaussianprocess.org/gpml/.
  • 9Williams C K I.Prediction with Gaussian processes:From linear regression to linear prediction and beyond[M]//Leaming in Graphical Models.Cambridge, MA: The MIT Press, 1999: 599-621.
  • 10黄勇,王崇骏,王亮,杭燕,陈兆乾.基于形状不变矩的图像检索算法的研究[J].计算机应用研究,2004,21(7):256-257. 被引量:21

二级参考文献9

  • 1Jain A K,Vailaya A. Image Retrieval Using Color and Shape[J].Pattern Recognition,1996,29(8):1233-1244.
  • 2Zahn C T,Roskies R Z. Fourier Descriptors for Plane Closed Curves[J].IEEE Transactions on Computers,1972,(21):269-285.
  • 3Rui Y,et al.Modified Fourier Descriptor for Shape Representation:A Practical Approach[C].Proc.1st International Workshop on Image Database and Multimedia Search,Amsterdam,the Netherlands,1996.
  • 4Liu W Y,Wang T,Zhang H J.A Hierarchical Characterization Scheme for Image Retrieval[C].Proc.7th IEEE International Conference on Image Processing (ICIP 2000),Vancouver,Canada,2000.
  • 5Chen Y X,Wang J Z.A Region-based Fuzzy Feature Matching Approach to Content-based Image Retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):1252-1267.
  • 6Wang J Z.Pathfinder:Multiresolution Region-based Searching of Pathology Images Using IRM[J]. Journal of American Medical Informatics Association,Symposium Supplement,2000,2000suppl:883-887 (LCDS).
  • 7Jain A K,Vailaya A.Shape-based Retrieval:A Case Study with Trademark Image Databases[J].Pattern Recognition,1998,31(9):1369-1390.
  • 8Hu M K.Visual Pattern Recognition by Moment Invariants[J].IRE Transactions on Information Theory,1962,IT-8(2):179-187.
  • 9Belkasim S O,Shridhar M,Ahmadi M.Pattern Recognition with Moment Invariant:A Comparative Study and New Results[J].Pattern Recognition,1991,24:1117-1138.

共引文献20

同被引文献10

  • 1张淑雅,赵一鸣,李均利.基于SVM的图像分类算法与实现[J].计算机工程与应用,2007,43(25):40-42. 被引量:32
  • 2翟俊海,张素芳,王熙照.基于小波变换和支持向量机的图像分类[J].河北大学学报(自然科学版),2007,27(3):317-321. 被引量:1
  • 3Tony van Gestel,Johan A.K. Suykens,Bart Baesens,Stijn Viaene,Jan Vanthienen,Guido Dedene,Bart de Moor,Joos Vandewalle.Benchmarking Least Squares Support Vector Machine Classifiers[J].Machine Learning.2004(1)
  • 4Slipa-Anan C,,Hartley R.Optimised KD-trees for fast im-age descriptor matching[].Proceedings of theth IEEE Conference on Computer Vision and Pattern Recognition.2008
  • 5Beis J S,Lowe D G.Shape indexing using approximate nearest-neighbor search in high-dimensional spaces[].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1997
  • 6Vries A D,,Mamoulis N,Nes N,et al.Efficient KNN search on vertically decomposed data[].Proceedings of the ACM SIGMOD International Conference on Management of Data.2002
  • 7Yu L,Liu H.Efficient feature selection via analysis of relevance and redundancy[].Journal of Machine Learning Research.2004
  • 8Chih-Wei Hsu,Chih-Jen Lin.A comparison of methods for multi-class support vector machines[].IEEE Transactions on Neural Networks.2002
  • 9姚伏天,钱沄涛.用于高光谱遥感图像分类的空间约束高斯过程方法[J].南京大学学报(自然科学版),2009,45(5):665-670. 被引量:5
  • 10刘艳,郝忠孝.基于Δ-tree的递归深度优先KNN查询算法[J].计算机工程,2011,37(22):48-50. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部