期刊文献+

具有联合椭圆不确定集与概率约束的鲁棒投资组合选择 被引量:4

Robust portfolio selections with joint ellipsoidal uncertainty set and probability constraints
原文传递
导出
摘要 针对参数在一个联合椭圆不确定集中变化的情形,建立了一个具有概率约束的鲁棒投资组合模型,并将其转化为可由内点算法求解的含线性矩阵不等式(LMI)约束的凸规划问题.应用实际交易数据对所提出的模型进行数值实验和比较,结果表明此模型能够获得具有更好财富增长率的投资策略,并能有效地分散最优投资组合的风险. A robust portfolio selection model with probability constraints is established under the assumptions that parameters of model vary in a joint ellipsoidal uncertainty set.Then the proposed problem is converted into a convex programming problem with LMI constraints that can be solved by using interior point algorithms.The empirical analysis and comparisons from the real market data indicate that the proposed model can obtain a portfolio strategy with the better wealth growth rate and diversify the risk of the optimal portfolio efficiently.
出处 《控制与决策》 EI CSCD 北大核心 2011年第4期558-564,570,共8页 Control and Decision
基金 国家自然科学基金项目(71001045 10971162) 国家社会科学基金项目(BJY145) 江西省教育厅青年科技项目(GJJ10114)
关键词 鲁棒优化 投资组合 椭圆不确定集 概率约束 线性矩阵不等式 robust optimization portfolio selection ellipsoidal uncertainty set probability constraint linear matrix inequality
  • 相关文献

参考文献15

  • 1Ben-Tal A, Nemirovski A. Robust convex optimization[J]. Mathematics of Operations Research, 1998, 23(4): 769- 805.
  • 2Goldfarb D, Iyengar G. Robust portlolio selection problems[J]. Mathematics of Operations Research, 2003, 28(1): 1-38.
  • 3Ma X-X, Zhao Q-Z, Qu J L. Robust portfolio optimization with a generalized expected utility model under ambiguity[J]. Annals of Finance, 2008, 4(4): 431- 444.
  • 4Fabozzi F J, Huang D-H, Zhou G-F. Robust portfolios: Contributions from operations research and finance[J]. Annals of Operations Research, 2010, 176(1): 1-5.
  • 5高莹,黄小原.具有VaR约束的跟踪误差投资组合鲁棒优化模型[J].中国管理科学,2007,15(1):1-5. 被引量:11
  • 6高金窑,李仲飞.模型不确定性条件下的Robust投资组合有效前沿与CAPM[C].第6届风险管理围际研讨会暨第7届金融系统工程研讨会.南京,2009:1383-1394.
  • 7Ttit0ncii R H, Koenig M. Robust asset allocation[J]. Annals of Operations Research, 2004, 132(2): 157-187.
  • 8Lu Z. Robust portfolio selection based on a joint ellipsoidal uncertainty set[J/OL], http ://www.informaworld.corn/smpp/content content=a915794216 db=all jumptype=rss.
  • 9Lu Z. A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set[J/OL]. http://www.springerlink.com/content/w5j56614r8033221/.
  • 10E1 Ghaoui L, Oks M, Oustry E Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[J]. Operations Research, 2003, 51(5): 543-556.

二级参考文献12

  • 1马永开,唐小我.基于市场基准的多因素证券组合投资决策模型研究[J].系统工程理论与实践,2004,24(7):30-37. 被引量:12
  • 2Roll R..A mean-variance analysis of tracking error[J].Journal of Portfolio Management,1992,18(4):13-22.
  • 3Black F.,Litterman R..Asset allocation:combining investor views with equilibrium[J].Journal of Fixed Income,1991,16(1):7-18.
  • 4威廉 T 津巴,约翰 M.马尔维.顾娟,等译.全球资产与负债管理建模[M].北京:经济科学出版社,2003,55-64.
  • 5Bai D.,Carpenter T.,Mulvey J..Making a case for robust optimization models[J].Management Science,1997,43(7):895-907.
  • 6Ben A.,Nemirovski A..Robust optimization-methodology and applications[J].Mathematics Program,2002,92(2) ;453-480.
  • 7Lobo Vandenberghe L.,Boyd S.,Lebert H..Secondorder cone programming:Interior-point methods and engineering applications[J].Linear Algebra Applacation,1998,(284):193-228.
  • 8Costa O L V,Paiva A C.Robust portfolio selection using linear-matrix inequalities[J].Journal of Economic Dynamics & Control,2002,26(6):889-909.
  • 9Pinara M.C.,Tutuncu R H.Robust Profit Opportunities in Risky Financial Portfolios[J].Operations Research Letters,2005,(33):331-340.
  • 10Alexander G.,Baptista A..Economic Implication of Using a Mean-VaR Model for Portfolio Selection:A Comparison with Mean-Variance Analysis[J].Journal of Economic Dynamics & Control,2002,26(8):1159-1193.

共引文献10

同被引文献41

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部