期刊文献+

基于新冲突度量的属性信息相关算法 被引量:2

Attribute information correlation algorithm based on new conflict measure
原文传递
导出
摘要 在传感器识别性能不理想的情况下,其给出的属性信息质量较低,传统的冲突度量难以客观地对它们之间的相异程度进行定量描述.为此,定义了一种新的冲突度量,该度量可以很好地对来自同类和异类目标的属性信息进行区分.在新冲突度量的基础上,采用多维分配算法实现了属性信息相关.理论分析和仿真实验均表明了所提出的基于新冲突度量的属性信息相关算法的有效性. The traditional conflict measure between attribute information can’t objectively give a quantitative description about their dissimilarity when the information quality is relatively low resulting from sensors’ poor identification performance.So a new conflict measure is defined,which can nicely distinguish between the attribute information from targets of the same type and that from targets of different type.Taking the new conflict measure as its basis,the correlation decision for attribute information is implemented with multi-dimensional assignment algorithm.Theoretical analysis and simulation experiment results show the effectiveness of the proposed attribute information correlation algorithm based on the new conflict measure.
出处 《控制与决策》 EI CSCD 北大核心 2011年第4期601-605,共5页 Control and Decision
基金 国家科技攀登计划基金项目(2006BAG02B05-14)
关键词 属性信息 相关 证据理论 冲突度量 多维分配算法 attribute information correlation evidence theory conflict measure multi-dimensional assignment algorithm
  • 相关文献

参考文献6

  • 1Hall D L, McMullen S A H. Mathematical techniques in multisensor data fusion[M]. London: Artech House Press, 2004.
  • 2Shafer G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976.
  • 3Smets E Data fusion in the transferable belief model[C]. Proc of the 3rd IEEE In Conf on Information Fusion, 2000: PS21-PS33.
  • 4Ristic B, Smets E The TBM global distance measure for the association of uncertain combat ID declarations[J]. Information Fusion, 2006, 7(3): 276-264.
  • 5Ristic 13, Smets P. Global cost of assignment in the TBM framework for association of uncertain ID reports[J]. Aerospace Science and Technology, 2007, 11(4): 303-309.
  • 6Gilbertand K G, Hofstra R B. Multidimensional assignment problems[J]. Decision Sciences, 1988, 19(2): 306-321.

同被引文献26

  • 1王娜,梁禹.基于神经网络与D-S证据理论的故障诊断[J].仪器仪表学报,2005,26(z1):773-774. 被引量:11
  • 2Denoux T.Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[J].Artificial Intelligence, 2008, 172(2/3): 234-264.
  • 3Chao F, Yang S L.The combination of dependencebased interval-valued evidential reasoning approach with balanced scorecard for performance assessment[J].Expert Systems with Applications, 2012, 39(3): 3717-3730.
  • 4Jousselme A L, Maupin P.Distances in evidence theory: Comprehensive survey and generalizations[J].Int J of Approximate Reasoning, 2012, 53(2): 118-145.
  • 5Platt J.Probabilistic outputs for Support Vector Machines and Comparison to Regularized Likelihood Method[C].Advance in large margin classifier.Cambridge: MIT Press, 2000: 61-74.
  • 6LIN H, LIN C, WENG R C.A note on platt’s probabilistic outputs for support vector machines[J].Machine Learning , 2007, 68(3): 267-276.
  • 7Dempster A P.Upper and lower probabilities induced by a multivalued mapping[J].The Annals of Mathematical Statistics,1967,38(2):325-339.
  • 8Shafer G.A mathematical theory of evidence[M].Princeton:Princeton University Press,1976.
  • 9Sevastianov P,Dymova L,Bartosiewicz P.A framework for rule-base evidential reasoning in the interval setting applied to diagnosing type 2 diabetes[J].Expert Systems with Applications,2012,39(4):4190-4200.
  • 10Mokhtari K,Ren J,Roberts C,et al.Decision support framework for risk management on sea ports and terminals using fuzzy set theory and evidential reasoning approach[J].Expert Systems with Applications,2012,39(5):5087-5103.

引证文献2

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部