期刊文献+

基于微粒群的案例推理方法研究 被引量:10

Research of CBR based on particle swarm optimization
原文传递
导出
摘要 距离测度是案例检索的关键问题,它直接影响案例检索精度.针对距离测度进行研究,提出一种基于微粒群方法的自学习距离测度,并将该自学习距离测度引入案例推理中,使案例推理在处理由相关属性表述的案例时有了合理的解决方法,从而扩展了案例推理的应用范围.最后,利用实际数据与UCI数据对基于新距离测度的案例推理技术进行了仿真实验,实验结果表明,与其他方法相比,该方法可以提高案例检索的准确性. Distance measure is the key issue in case-based reasoning(CBR),which influences the accuracy of case retrieval directly.For distance measure,a learning distance measure based on particle swarm optimization is proposed.The application range of CBR is extended by introducing leaning distance measure into CBR technology for the first time,which makes CBR technology have reasonable method to deal with the cases with correlative attributes.Finally,the simulation is conducted with real data and UCI data.The result shows that,compared with the other methods,this distance measure improves the accuracy of case retrieval.
作者 韩敏 沈力华
出处 《控制与决策》 EI CSCD 北大核心 2011年第4期637-640,共4页 Control and Decision
基金 国家科技支撑计划项目(2006BAB14B05) 国家973计划项目(2006CB403405)
关键词 案例推理 案例检索 微粒群 自学习距离测度 case-based reasoning case retrieval particle swarm optimization learning distance measure
  • 相关文献

参考文献9

  • 1韩雪,冯玉强.基于案例推理的谈判支持系统的研究[J].控制与决策,2008,23(7):791-794. 被引量:8
  • 2Kwang Hyuk Im, Sang Chan Park. Case-based reasoning and neural network based expert system for personalization[J]. Expert Systems with Applications, 2007, 32(1): 77-85.
  • 3Xiang Shiming, Nie Feiping, Zhang Changshui. Learning a mahalanobis distance metric for data clustering and classification[J]. Pattern Recognition, 2008, 41 (12): 3600- 3612.
  • 4Hoi S C H, Liu W, Lyu M R, et al. Learning distance metrics with contextual constraints for image retrieval[C]. Proc of the IEEE Computer Society Conf on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006: 2072-2078.
  • 5Aharon Bar-hillel, Tomer Hertz, Noam Shental, et al. Learning distance functions using equivalence relations[C]. Proc of the 20th Int Conf on Machine Learning. Washington DC, 2003:11-18.
  • 6Yeung Dit-yan, Chang Hong. Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints[J]. Pattern Recognition, 2006, 39(5): 1007-1010.
  • 7Li Hui, Sun Jie, Sun Bo-liang. Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors[J]. Expert Systems with Applications, 2009, 40(93): 643-659.
  • 8李军军,肖健梅,王锡淮.一种精英退火微粒群算法[J].控制与决策,2008,23(7):756-761. 被引量:6
  • 9Niloofar Arshadi, Igor Jurisica. Data mining for case-based reasoning in high-dimensional biological domains[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(8): 1127-1137.

二级参考文献25

  • 1杜海峰,公茂果,刘若辰,焦李成.自适应混沌克隆进化规划算法[J].中国科学(E辑),2005,35(8):817-829. 被引量:28
  • 2雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 3王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报,2006,32(4):630-635. 被引量:33
  • 4房启超,徐林,王建辉,顾树生.改进的PSO及其在结晶器液位控制中的应用[J].仪器仪表学报,2006,27(11):1399-1402. 被引量:11
  • 5Eberhart R C, Kennedy J. A new optimizer using particles swarm theory[C]. Proc of 6th Int Symposium on Micro Machine and Human Science. Nagoya, 1995: 39-43.
  • 6Shi Yu-hui, Eberhart R. A modified particle swarm optimizer[C]. Proc of IEEE Int Conf on Evolutionary Computation. Anchorage, 1998: 69-73.
  • 7Wang Xi-huai, Li Jun-jun. Hybrid particle swarm optimization with simulated annealing[C]. The 2004 Int Conf on Machine Learning and Cybernetics. Shanghai, 2004: 2402-2405.
  • 8Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C].Proc of the IEEE Conf on Evolutionary Computation. California: IEEE Sevice Center, 2000: 84-88.
  • 9Zwe-lee-Gaing. A particle swarm optimization approach for optimum design of PID controller in AVR system [J]. IEEE Trans on Energy Conversion, 2004, 19(2) 384-391.
  • 10Dong Hwa Kim, Jae Hoon Cho. Intelligent control of AVR system using GA-BF [C]. Lecture Notes in Computer Science Proc of Springer. Melbourne, 2005: 854-859.

共引文献12

同被引文献162

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部