期刊文献+

一种基于区域投影的人眼精确定位方法 被引量:16

A precise eye localization method based on region projection
原文传递
导出
摘要 针对传统灰度投影方法抗干扰能力较差的弱点,提出了一种基于区域投影的人眼精确定位方法。考虑到投影过程中的二维特性,在水平和垂直方向将眼睛图像分成不相重叠的区域,分别将各区域内的灰度值投影获得瞳孔的候选区域并将其扩展获得瞳孔窗口,利用灰度特性通过边界跟踪的方法实现了对瞳孔中心的精确定位,给出了人眼定位精确度判定准则,采用Caltech faces和JAFFE数据库进行测试。实验表明,与传统的投影方法比较,本文方法具有较强的鲁棒性,人眼定位精度更高。 Due to the poor anti-jamming ability of traditional gray projection method,we propose a new method based on region projection for precise eye localization.Firstly,taking the two-dimensional characteristics into account in the process of projection,the eye image was divided into several non-overlapping regions,and the candidate region of pupil was obtained by horizontal projection and vertical projection.The region was expanded and a pupil window was got.Then,the pupil center was localized exactly by border tracking with the gray characteristics.Finally,the criterion to evaluate the localization accuracy of human eye was worked out,and the algorithm was tested in Caltech face databases and JAFFE database.Experimental show that the method is effective and robust,and has higher eye-localization precision than traditional projection methods.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2011年第4期618-622,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60775023 60975025) 教育部留学回国人员科研启动基金资助项目([2010]1174)
关键词 人脸识别 眼睛定位 区域投影 灰度投影 face recognition eye localization region projection gray projection
  • 相关文献

参考文献17

  • 1张敏,陶亮.人脸图像中人眼的检测与定位[J].光电工程,2006,33(8):32-36. 被引量:14
  • 2高志升,袁红照,杨军.融合CDI和LBP的人脸特征提取与识别算法[J].光电子.激光,2010,21(1):112-115. 被引量:19
  • 3Gao Y S, Leung M K H. Face recognition using line edge map [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(6) :764-779.
  • 4Han G,Zhao C X,Zhang H F,et al. A new feature fusion method at decision level and its application[J]. Optoelectronics Letters,2010,6(3) : 129-132.
  • 5Wu J X,Zhou Z H. Efficient face candidates selector for: facedetection[J]. Pattern Recognition, 2003,36(5) : 1175-1186.
  • 6Liu X,Xu F, Fujimura K. Real-time eye detection and tracking for driver observation under various light conditions[A]. IEEE Intel.ligent Vehicle Symposium [C]. Versailles, France, 2002, 344-351.
  • 7于威威,滕晓龙,刘重庆.一种快速准确的人眼定位方法[J].光电子.激光,2005,16(4):479-483. 被引量:5
  • 8Peng W, Green M B, Qiang J, et al. Automatic eye detection and its validation[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. 2005,164-164.
  • 9许高凤,黄磊,刘昌平,丁士圻.一种联合的人眼精确定位算法[J].小型微型计算机系统,2008,29(6):1158-1162. 被引量:6
  • 10Brunelli R, PoggioT. Face recognition: Features versus templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(10) : 1042-1052.

二级参考文献49

  • 1黄鸿,李见为,冯海亮.基于有监督的核局部线性嵌入的人脸性别识别[J].光电子.激光,2009,20(2):248-251. 被引量:3
  • 2丁嵘,戴琼海,徐文立,苏光大,尹浩.大样本库人脸识别的分级弹性匹配算法[J].光电子.激光,2004,15(10):1238-1241. 被引量:4
  • 3顾华,苏光大,杜成.人脸关键特征点的自动定位[J].光电子.激光,2004,15(8):975-979. 被引量:16
  • 4张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 5Turk M, Pentland A. Eigenfaces for recognition[J]. Cognitive Neuron Science J. 1991,3(1) :71-86.
  • 6Etenmad K,Chellappe R. Discriminant analysis for recognition of human face images[J]. Journal of the Optical Society of America, 1997, 14(8) : 1724-1733.
  • 7Yang J,Zhang D,Frangi A F,et al. Two-dimensional PCA: a new approach to appearance based face representation and recognition[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2004,2,6 (1) :131-137.
  • 8Bartlett M S,Sejnowski T J. Independent Components of Face Images,A representation for Face Recognition[A]. Proceedings of the Fourth Annual Joint Symposium on Nerval Computation Pasadena [C]. 1997,17.
  • 9Roweis S,Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290(5500) ; 2323-2326.
  • 10Luo J, Ma Y, Takikawa E, et al. Person-specific SIFT Features for Face Recognition[A]. IOASSP[C]. 2007. 593-596.

共引文献120

同被引文献249

引证文献16

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部