期刊文献+

基于总传播误差法构建海底地形模型 被引量:4

Total propagated error computation algorithm and its application in processing of multi-beam data
下载PDF
导出
摘要 为了提高多波束数据处理效率,克服趋势面法、中值滤波法等对海底地形细节的损坏,采用总传播误差法进行多波束数据处理、构建海底地形模型(DTM)。研究结果表明:总传播误差法以实测数据误差计算为基础,依据IHO标准设置滤波器进行粗差自动剔除,避免了人机交互式编辑主观性判断的干扰,数据处理速度是人机交互式编辑的5倍。总传播误差法依据水深变化设置可变网格,保证了地形模型具有较高的分辨率,很好地保留了地形细节。总传播误差模型具有更强的抗差性,适合于海底热液区等复杂地形环境研究。 Total propagated error computation(TPE)algorithm is established to improve the efficiency of Multi-Beam Echo-Sounder data(MBES)processing and to avoid losing of terrain detail in trend surface model and median filter model.According to the IHO standard,TPE algorithm eliminates noises automatically based on the total propagated error computation.TPE establishes Digital Terrain Model(DTM)based on the combined estimation of the depth and related uncertainty of the MBES data.To evaluate the efficiency and quality of the TPE algorithm,TPE algorithm and man-machine editor are used respectively to process the same MBES data of Lau Basin.The data processing speed of TPE algorithm is 5 times of the man-machine editor.The TPE terrain model has much more detail than the man-machine model.It can be seen from the result that TPE algorithm is superior both in efficiency and uncertainty control and favorable for the research of complicated topography.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2011年第1期73-76,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家海洋局青年基金资助项目(1083-10) 国家海洋局第二海洋研究所基本科研业务费专项基金资助项目(JG0705) 国家青年基金资助项目(40506017) 中国近海海洋综合调查与评价专项基金资助项目(908-zc-1-07)
关键词 总传播误差法 多波束 海底地形模型 水深与误差联合估计 Total Propagated Error Computation Algorithm Multi-Beam Echo-Sounder Digital Terrain Model Estimation of depth and related uncertainty
  • 相关文献

参考文献9

  • 1王德刚,叶银灿.CUBE算法及其在多波束数据处理中的应用[J].海洋学研究,2008,26(2):82-88. 被引量:20
  • 2Varma H P, Boundreau M. Probability of detecting errors in dense digital bathymetric data sets by using 3D graphics combined with statistical techniques[J]. Lighthouse, 1989, (40):31-36.
  • 3Eeg J. On the Identification of Sikes in Soundings[J]. Int Hydrographic Review, 1995,72( 1 ):33-41.
  • 4Du Z,Wells D E,Mayer L A. An approach to automatic detection of outliers in multibeam echo sounding data[J]. The Hydro journal, 1996,7(9): 19-25.
  • 5Lirakis C B,Bongirvanni K P. Automated Multibeam Data Cleaning and Target Detection[J]. Proc IEEE Oceans, 2000,(5):719-723.
  • 6何义斌,吴书帮,谢洪燕,赵建虎.多波束异常测深数据检测方法实践[J].测绘科学,2004,29(1):50-52. 被引量:15
  • 7阳凡林,刘经南,赵建虎.多波束测深数据的异常检测和滤波[J].武汉大学学报(信息科学版),2004,29(1):80-83. 被引量:63
  • 8Calder BR. Automatic statistical processing of multibeam echosounder data[J]. Int Hydro Review, 2003, 4(1):53-68.
  • 9Calder BR, Mayer LA. Automatic processing of high-rate,high-density multibeam echosotmder data[J].Geoehem-Geophys-Geosyst,2002,4(6): 24-48.

二级参考文献21

  • 1容观澳.计算机图像处理[M].清华大学出版社,2000.269-288.
  • 2黄谟涛 翟国君 管铮 等.多波束测深技术研究进展与展望[A]..第12届海洋测绘年会论文集[C].,..
  • 3VARMA H P,BOUDREAU M. Probability of detecting errors in dense digital bathymetric data sets by using 3D graphics combined with statistical techniques [J]. Lighthouse,1989, 40: 31-36.
  • 4EEG J. On the Identification of Sikes in Soundings [J]. Int Hydro graphic Review, 1995, 72 ( 1 ) : 33-41.
  • 5DU Z,WELLS D E, MAYER L A. An approach to automatic detection of outliers in muhibeam echo sounding data [J]. The Hydro Journal,1996, 79: 19-25.
  • 6LIRAKIS C B, BONGIRVANNI K P. Automated Muhibeam Data Cleaning and Target Detection [J]. Proc IEEE Oceans, 2000, 1 (1): 719-723.
  • 7CALDER B R, MAYER L A. Automatic Processing of High-Rate, High-Density Muhibeam Echosounder Data [J]. Geochem, Geophys, Geosyst, 2002, 4 (6): 24-48.
  • 8CALDER B R. Automatic Statistical Processing of Multibeam Echosounder Data [J]. Int Hydro Review, 2003, 4 (1): 53-68.
  • 9MAYBECK P S. Stochastic Models,Estimation and Control [M]. London: Academic Press, 1979.
  • 10CORMEN T H, LEISERSON C E, RIVEST R L. Introduction to Algorithms [M]. New York: MIT Press, 1990.

共引文献81

同被引文献78

  • 1丁志雄,李纪人,李琳.基于GIS格网模型的洪水淹没分析方法[J].水利学报,2004,35(6):56-60. 被引量:119
  • 2刘小生,黄玉生.“体积法”洪水淹没范围模拟计算[J].测绘通报,2004(12):47-49. 被引量:24
  • 3张立华,朱庆,暴景阳,徐胜华.一种基于数字伴潮海岸线的潮滩淹没区仿真算法[J].武汉大学学报(信息科学版),2007,32(7):637-640. 被引量:8
  • 4USBGN. Advisory Committee on Undersea Features(ACUF). 2012. http://earth-info.nga.mil/gns/html/acuf.htm.
  • 5IHO, IOC. GEBCO Digital guidelines and nomenclature. August, 2001.
  • 6IHO, IOC. GEBCO Gazetteer of Undersea Feature Names. August, 2010. http://www.gebco.net/data and_products/undersea_feature_ names/.
  • 7IHO, IOC. Standardization of undersea feature names, Bathymetric Publication No. 6.4th ed. November 2008.
  • 8国家海洋信息中心.海底地形特征命名标准(中文译稿).国际水道测量局出版物第6号(B-6).第4版.2011年3月.
  • 9中国国家标准化管理委员会.海底地名命名导则(国标征求意见稿)ICS07.040.2011年3月.
  • 10U.S. Board on Geographic Names, Advisory Committee on Undersea Features. Policies and Guidelines for the Standardization of Undersea Feature Names. 6 April, 1999.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部