摘要
为了解决由"修复非新"部件组成的可修系统,运用几何过程理论和补充变量方法,研究了由两个不同型部件和一个修理工组成的可修型冷贮备系统。假定两个部件的工作寿命和修理时间都服从指数分布,对部件1的修理是几何维修而对部件2的修理则是修复如新,得到了系统的可用度、可靠度等可靠性指标,最后还给出了修理工空闲的概率。该成果具有一定的理论和实际意义。
In order to study the repairable system composed of "repaired-but-not-new" components,using the geometric process theory and the supplementary variable method,this paper investigates the cold standby repairable system consisting two different types of components and one repairman.Assuming that the working lives and repair times of two components follow the exponential distribution,the repair of the component 1 is geometrical repair and the repair of the component 2 is as good as new,the some important indices such as system availability,reliability,and system's average working time to first failure are obtained.Also the study provides the probability of repairman's idle time.The results have some theoretical and practical significances.
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2011年第1期146-149,共4页
Journal of Liaoning Technical University (Natural Science)
基金
河北省教育厅计划基金资助项目(2007323)
河北省自然科学基金资助项目(A2005000301)
关键词
几何过程
补充变量
马尔可夫过程
拉普拉斯变换
geometric process
supplementary variable
Markov process
Laplace transform