期刊文献+

保Schur(Fan)积的映射 被引量:1

On preserving Schur(Fan)-product maps
下载PDF
导出
摘要 运用算子论方法,研究矩阵代数上保Schur(Fan)积的线性满射φ。可以证明,φ是一个置换算子(正(负)置换算子),从而得知,矩阵代数上保Schur积的线性满射是一个置换算子,保Fan积的线性满射是一个正(负)置换算子。 With some methods in operator theory,the linear surjection map on matrix algebras which preserves Schur(Fan)-product is investigated.It can be proved that is a permutation operator(plus(minus) permutation operator).Thus,preserving Schur-product linear surjection map on matrix algebras is a permutation operator,and preserving Fan-product linear surjection map on matrix algebras is a plus(minus) permutation operator.
作者 张芳娟
出处 《西安邮电学院学报》 2011年第2期59-61,共3页 Journal of Xi'an Institute of Posts and Telecommunications
基金 国家自然科学基金资助项目(10571114) 陕西省自然科学基础研究计划资助项目(2004A17) 西安邮电学院中青年基金项目(0001245)
关键词 保Schur积 保Fan积 置换算子 preserving Schur-product preserving Fan-product permutation operator
  • 相关文献

参考文献10

  • 1R. V.Kadison, J. R Ringrose. Fundamentals of the theory of operator algebras [M]. Academic Press, INC. , London, 1986.
  • 2M.Macus, R. Purves. Linear tansformations on algebras of matrices: the invariance of elementary symmet- ric functions [J]. Canadian Journal of Mathematics, 1959, 11(2): 383-396.
  • 3M. Bresar. P. Semrl, Commutativity preserving linear maps on central simple algebras[J]. Journal of Algebra,2005, 284(1): 102-110.
  • 4P. Sernrl, M. Bresar. On bilinear maps on matrices with applications to commutativity preservers [J]. Journal of Algebra, 2006, 301(2): 803-837.
  • 5P. Serrtrl. Maps on matrix spaces[J]. Linear Algebra and its Applications, 2006, 413(2): 364-393.
  • 6C. K. Li, P. Semrl, N. S. Sze. Maps preserving the nilpotency of products of operators[J]. Linear Algebra and its Applications, 2007,424(1): 222-239.
  • 7J. Zhang, F. Zhang. Nonlinear maps preserving Lie products on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2008,429(1):18-30.
  • 8AA. Alieva, AE. Guterman, Linear preservers of rank permutability[J]. Linear Algebra and its Applica- tions, 2004, 384(1).97-108.
  • 9CK. Li, E. Poon. Schur product of matrices and numerical radius (range) preserving maps[J]. Linear Al- gebra and its Applications, 2007, 424(1): 8-24.
  • 10E. Pooru Schur-multiplicative maps preserving unitarily invariant norms[J]. Linear Algebra and its Applications, 2008, 428(2) :865-870.

同被引文献12

  • 1Kadison R V,Ringrose J R.Fundamentals of the the-ory of operator algebras[M].Academic Press,INC,London,1986:324-340.
  • 2Bresar M,Semrl P.Commutativity preserving linearmaps on central simple algebras[J].Journal of Alge-bra,2005,284(1):102-110.
  • 3Semrl P,Bresar M.On bilinear maps on matrices withapplications to commutativity preservers[J].Journalof Algebra,2006,301(2):803-837.
  • 4Semrl P.maps on Matrix spaces[J].Linear Algebraand its Applications,2006,413(2):364-393.
  • 5Zhang jianhua,Zhang fangjuan.Nonlinear maps pre-serving Lie products on factor von Neumann algebras[J].Linear Algebra and its Applications,2008,429(1):18-30.
  • 6Molnar M,Semrl P.Nonlinear commutativity preser-ving maps on self-adjoint operators[J].Q.J.Math.2005,56(3):589-595.
  • 7Semrl P.Non-linear commutativity preserving maps[J].Acta Mathematica Sinica(Szeged),2005,71(5):781-819.
  • 8Bel H,Daif M.On commutativity and strong commu-tativity preserving maps[J].Bulletin of the CanadianMathematics,1994,37(3):443-447.
  • 9Bresar M,Miers C.Strong commutativity preservingmaps of semiprime rings[J].Bulletin of the CanadianMathematics,1994,37(4):457-460.
  • 10Deng Qun,Ashraf M.On strong commutativity pre-serving maps[J].Results Math,1996,30(1):259-263.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部