期刊文献+

一类害虫流行病控制模型非常数正平衡解的存在性 被引量:1

The existence of non-constant positive steady state of an epidemic model for pest control
原文传递
导出
摘要 研究一类具有交错扩散的害虫流行病控制模型。讨论反应扩散系统惟一的正常数平衡解的全局稳定性,建立正平衡解上下界的先验估计,证明了交错扩散系统非常数正平衡解的存在性。 An epidemic model for pest control is studied in this paper.The global stability of a unique positive constant steady state for the reaction-diffusion system is analyzed,and then a prior upper and lower bounds for all possible positive steady state are established.Finally,the formation of a stationary pattern for a cross-diffusion system is proved.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第3期80-88,共9页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11061031)
关键词 害虫控制模型 交错扩散 全局稳定性 平衡解 pest control model cross-diffusion global stability steady state
  • 相关文献

参考文献14

  • 1WANG L M, CHEN L S, NIETO J J. The dynamics of an epidemic model for pest control with impulsive effect[ J]. Nonlin- ear Analysis: RWA, 2010, 11 (3) : 1374-1386.
  • 2SMOLLER J. Shock waves and reaction-diffusion equations[ M]. Berlin: Springer-Verlag, 1983.
  • 3PENG R. Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model Part I[ J]. J Diff Eqs, 2009, 247 : 1096-1119.
  • 4DUBEY B, DAS B, HUSSAIN J. A predator-prey interaction model with self and cross-diffusion[ J]. Ecol Modelling, 2001, 141:67-76.
  • 5KUTO K, YAMADA Y. Multiple coexistence states for a prey-predator system with cross-diffusion [ J ]. J Diff Eqs, 2004, 197:315-348.
  • 6CHEN W Y, PENG R. Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model [ J ]. J Math Anal Appl, 2004, 291:550-564.
  • 7PENG R, WANG M X, YANG G Y. Stationary patterns of the Holling-Tanner prey-predator model with diffusion and cross- diffusion[J]. Appl Math Comput, 2008, 196:570-577.
  • 8WANG M X, PANG P Y H. Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model[J]. Appl Math Lett, 2008, 21:1215-1220.
  • 9WANG M X, PANG P Y H. Qualitative analysis of a diffusive variable-territory prey-predator model [ J ]. Discrete Contin Dyn Syst, 2009, 23 (3): 1061-1072.
  • 10WANG M X. Non-constant positive steady-states of the Sel'kov model[ J]. J Differential Equations, 2003, 190(2) :600-620.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部