期刊文献+

次分数布朗运动的几点注记 被引量:4

Remarks on sub-fractional Brownian motion
原文传递
导出
摘要 假设SH={StH,t≥0}是指标为H∈(0,1)的次分数Brown运动,证明了当h→+∞时,增量过程(ShH+t-SHh,t≥0)依分布收敛于指数H的分数Brown运动,同时讨论了与次分数Brown噪声相关联的极限定理。 Let SH={SHt,t≥0} be a sub-fractional Brownian motion with index H∈(0,1).It is shown that the increment process generated by the sub-fractional Brownian motion(SHh+t-SHh,t≥0) converges to a fractional Brownian motion with Hurst index H in the sense of finite dimensional distributions,as h tends to infinity.Also,the limit theorems associated with the subfractional Brownian noise are also studied.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第3期102-108,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10871041) 安徽省高等学校省级自然科学研究重点项目(KJ2011A139)
关键词 BROWN运动 分数Brown运动 次分数Brown运动 拟Dirichlet过程 Brownian motion fractional Brownian motion sub-fractional Brownian motion quasi-Dirichlet process
  • 相关文献

参考文献12

  • 1MISHURA Y. Stochastic calculus for fractional Brownian motions and related processes [ M ]. New York: Springer-Verlag, 2008.
  • 2BIAGINI F, HU Y, SENDAL B, et al. Stochastic calculus for fractional Brownian motions and applications [ M ]. Berlin: Springer-Verlag, 2008.
  • 3BOJDECKI T, GOROSTIZA L G, TALARCZYK A. Sub-fractional Brownian motion and its relation to occupation times[ J]. Statistics &Probability Letters, 2004, 69:405-419.
  • 4BOJDECKI T, GOROSTIZA L G, TALARCZYK A. Fractional Brownian density process and its self-intersection local time of order k[ J]. Journal of Theoretical Probability, 2004, 69(5) :717-739.
  • 5BOJDECKI T, GOROSTIZA L G, TALARCZYK A. Limit theorems for occupation time fluctuations of branching systems 1 : long-range dependence [J]. Stochastic Processes and their Applications, 2006, 116 : 1-18.
  • 6BOJDECKI T, GOROSTIZA L G, TALARCZYK A. Some extensions of fractional Brownian motion and subfractional Brown- ian motion related to particle systems[J]. Elect Comm Probab, 2007, 12 : 161-172.
  • 7TUDOR C. Some properties of the sub-fractional Brownian motion [ J ]. Stochastics, 2007, 79:431 448.
  • 8TUDOR C. Inner product spaces of integrands associated to subfractional Brownian motion [ J ]. Statistics & Probability Letters, 2008, 78:2201-2209.
  • 9TUDOR C. On the Wiener integral with respect to a sub-fractional Brownian motion on an interval[ J ]. J Math Anal Appl, 2009, 351 : 456-468.
  • 10TUDOR C. Some aspects of stochastic calculus for the sub-fractional Brownian motion[J]. Ana. Univ. Bucuresti Matemati- ca. 2008.199-230.

同被引文献28

  • 1刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50
  • 2张元庆,蹇明.汇率连动期权的保险精算定价[J].经济数学,2005,22(4):363-367. 被引量:14
  • 3毕学慧,杜雪樵.后定选择权的保险精算定价[J].合肥工业大学学报(自然科学版),2007,30(5):649-651. 被引量:10
  • 4Black F,Scholes M.The pricing of options and corporate liabilities. Journal of Politics . 1973
  • 5Peter Klein.??Pricing Black-Scholes options with correlated credit risk(J)Journal of Banking and Finance . 1996 (7)
  • 6Johnson H,Stulz R.The Pricing of Options with Default Risk. Journal of Finance, The . 1987
  • 7Klein P,Inglis M.Valuation of European options subject to fi-nancial distress and interest rate risk. Journal of Derivatives . 1999
  • 8BOJEECK T,GOROSTIZA L G,TALARCZYK A.Some extensions of fractional Brownian motion related to particle systems. Elect Comm Probab . 2007
  • 9T. Bojdecki,L.G. Gorostiza,A. Talarczyk.??Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence(J)Stochastic Processes and their Applications . 2005 (1)
  • 10Tomasz Bojdecki,Luis G. Gorostiza,Anna Talarczyk.??Sub-fractional Brownian motion and its relation to occupation times(J)Statistics and Probability Letters . 2004 (4)

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部