期刊文献+

Infinite Sequence of Conservation Laws and Analytic Solutions for a Generalized Variable-Coefficient Fifth-Order Korteweg-de Vries Equation in Fluids 被引量:1

Infinite Sequence of Conservation Laws and Analytic Solutions for a Generalized Variable-Coefficient Fifth-Order Korteweg-de Vries Equation in Fluids
下载PDF
导出
摘要 In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期629-634,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.60772023 by the Slpported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and As tronautics by the Specialized Research Fund for the Doctoral Program of Higher Educatioi under Grant No.200800130006 Chinese Ministry of Education,and by the Innovation Foundation for Ph.D.Graduates under Grant Nos.30-0350 and 30-0366 Beijing University of Aeronautics and Astronautics
关键词 variable-coefficient fifth-order Korteweg-de Vries equation in fluids infinite sequence of conservation laws Hirota bilinear method soliton solutions wave number symbolic computation 五阶KdV方程 广义变系数 守恒定律 流体方程 德弗里斯 无限序列 Backlund变换 解析解
  • 相关文献

参考文献63

  • 1X. Xia and H.T. Shen, J. Fluid Mech. 467 (2002) 259.
  • 2J.K. Hunter and J. Scheurle, Phys. D 32 (1988) 253.
  • 3J.P. Boyd, Phys. D 48 (1991) 129.
  • 4R. Grimshaw and N. Joshi, SIAM J. Appl. Math. 55 (1995) 124.
  • 5K. Kirchgissner, Adv. Appl. Math. 26 (1988) 135.
  • 6A.R. Champneys and M.D. Groves, J. Fluid Mech. 342 (1997) 199.
  • 7Z.L. Li, J. Phys. A 41 (2008) 145206.
  • 8Chin. Phys. B 18 (2009) 4074.
  • 9P.D. Lax, Comm. Pure Appl. Math. 21 (1968) 467.
  • 10K. Sawada and T. Kotera, Prog. Theor. Phys. 51 (1974) 1355.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部