期刊文献+

基于字特征的短信分类方法研究 被引量:2

Research of Short Message Categorization Method Based on the Features of Chinese Character
下载PDF
导出
摘要 随着商业广告短信、色情短信、骚扰短信等通过手机不断地蔓延,严重地影响了人们日常生活和社会的稳定.因此短信分类已经成为自然语言处理的一个重要领域.分析了近年来垃圾短信内容的发展,提出了一种基于字特征的短信分类方法.实验结果表明,和词特征相比,该方法使有用短信的错判率有了明显的降低.总之,字特征用于短信分类是可行的. With the spread of the commercial advertising messages,pornographic messages and harassing messages through mobile phone,People′s Daily life and social stability have been seriously influenced.Therefore short message classification has become an important field of the natural language processing.The development of short messages content in recent years is analyzed,and a method for short message classification is proposed.The experiment results indicate that in contrast to word features this method reduced the mistake rate of useful message.This means that the method presented in this paper is feasible.
作者 崔彩霞
出处 《太原师范学院学报(自然科学版)》 2011年第1期103-105,共3页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 短信分类 字特征 KNN方法 short message categorization the features of chinese characters KNN
  • 相关文献

参考文献4

二级参考文献40

  • 1徐洪伟,方勇,音春.垃圾邮件过滤技术分析[J].通信技术,2003,36(10):126-128. 被引量:14
  • 2吴军,王作英,禹锋,王侠.汉语语料的自动分类[J].中文信息学报,1995,9(4):25-32. 被引量:24
  • 3王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 4凌云,刘军,王勋.多层次web文本分类[J].情报学报,2005,24(6):684-689. 被引量:12
  • 5[1]D D Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In: The 10th European Conf on Machine Learning(ECML98), New York: Springer-Verlag, 1998. 4~15
  • 6[2]Y Yang, X Lin. A re-examination of text categorization methods. In: The 22nd Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, New York: ACM Press, 1999
  • 7[3]Y Yang, C G Chute. An example-based mapping method for text categorization and retrieval. ACM Trans on Information Systems, 1994, 12(3): 252~277
  • 8[4]E Wiener. A neural network approach to topic spotting. The 4th Annual Symp on Document Analysis and Information Retrieval (SDAIR 95), Las Vegas, NV, 1995
  • 9[5]R E Schapire, Y Singer. Improved boosting algorithms using confidence-rated predications. In: Proc of the 11th Annual Conf on Computational Learning Theory. Madison: ACM Press, 1998. 80~91
  • 10[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features. In: The 10th European Conf on Machine Learning (ECML-98). Berlin: Springer, 1998. 137~142

共引文献139

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部