期刊文献+

一个笛卡尔乘积的Hausdorff维数

The Hausdorff Dimension of Descartes Product Set
下载PDF
导出
摘要 介绍了康托型集的几个性质,讨论一类笛卡尔乘积,在dimHE<1存在一个集合F,其维数满足dimH(E×F)=dimHE+dimHF的情况.进而构造一类Borel集,使得dimH(E×F)=dimHE+dimHF成立. This paper introduces some features of Cantor set and discusses Descartes product set.If dimHE1,there is a set of F,the dimension of which observes the condition in which dimH(E×F)=dimHE+dimHF.Then Borel set that makes dimH(E×F)=dimHE+dimHF is established.
作者 柳艳
出处 《南京工程学院学报(自然科学版)》 2010年第3期1-4,共4页 Journal of Nanjing Institute of Technology(Natural Science Edition)
关键词 笛卡尔乘积 HAUSDORFF维数 康托型集 BOREL集 Descartes product set Hausdorff dimension Cantor set Borel set
  • 相关文献

参考文献4

  • 1FALCONER K J.Fractal Geometry-Mathematical Foundations And Applications[M].John:Wiley & Sons,1990.
  • 2KAUFMAN R.Entropy,dimension and random sets[J].Quart J Math,1987,38(2):77 -80.
  • 3HU X,TAYLOR S J.Fractal properties of products and projections of measures in R^d[J].Math Proc Camb Phil SOc,1994 (115):527-544.
  • 4XIAO Y M.Packing dimension,hansdorff dimension and cartensian product sets[J].Math Proc Camb Phil Soc,1996(120):535 -546.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部