期刊文献+

十字型微通道内气泡形成的实验观察 被引量:8

Formation of Dispersed Small Bubbles in Flow-Focusing Microchannels
下载PDF
导出
摘要 采用高速摄像仪对聚焦十字型微装置内分散小气泡的生成进行了研究。方形截面微通道的尺寸分别为400μm×400μm和600μm×600μm。氮气为气相,加入表面活性剂十二烷基硫酸钠(sodium dodecyl sulfate,SDS)(0~0.5%(wt))的水—甘油(25%(wt),50%(wt),62%(wt))溶液为液相。考察了不同的操作条件如液体流速、黏度和表面张力对气泡生成尺寸的影响。泡状区内生成的气泡尺寸随连续相流体流量和黏度的增大而减小,随表面张力的增大而增大。讨论了气泡的生成机理,提出了一个新的指数模型来描述气泡生成尺寸与局部毛细管数的关系。 The formation of dispersed small bubbles in microfluidic flow-focusing devices was investigated experimentally by means of using a high speed camera.The dimensions of the experimental square microchannels are 400 m×400 m and 600 m×600 m,respectively.N2 was used as the gas phase,and water-glycerol mixtures(25%(wt),50%(wt) and 62%(wt)) with different concentrations(0~0.5%(wt)) of surfactant SDS(sodium dodecyl sulfate) were used as liquid phase.The parameters,such as liquid flow rate,the viscosity and the surface tension of the liquid phase,which influence the size of formed small bubbles,were studied.It was found that the bubble size in bubbly regime decreases with the increase of the flow rate and the viscosity of the liquid phase,while it increases with the increase of the surface tension of the liquid phase.The bubble formation mechanism was discussed,and it was conclude that the small bubbles are formed due to the viscosity force and interfacial forces.A new power law model was proposed to describe the relationship between the size of formed bubbles and the local capillary number.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2011年第2期337-340,共4页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金资助项目(20876107) 化学工程国家重点实验室开放课题(SKL-ChE-08B06) 教育部高校引智项目(B06006)资助
关键词 微通道 气泡 高速摄像仪 聚焦十字型微装置 微流体 microchannel bubble high speed camera flow-focusing devices microfluidics
  • 相关文献

参考文献11

  • 1罗小明,何利民,吕宇玲.水平管段塞流持液率的波动特性[J].高校化学工程学报,2009,23(4):719-723. 被引量:7
  • 2Xu J H,Li S W,Lan W J,et al.Microfluidic approach for rapid interfacial tension measurement. Langmuir . 2008
  • 3Squires Todd M,Quake Stephen R.Microfluidics: fluid physics at the nanoliter scale. Reviews of Modern Physics . 2005
  • 4A Gunther,KF Jensen.Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab on a Chip . 2006
  • 5M.T. Kreutzer,F. Kapteijn,J.A. Moulijn,J.J. Heiszwolf.Multiphase Monolith Reactors: Chemical Reaction Engineering of Segmented Flow in Microchannels. Chemical Engineering Science . 2005
  • 6Cubaud, T,Ho, C.-M.Transport of bubbles in square microchannels. The Physics of Fluids . 2004
  • 7P Garstecki,MJ Fuerstman,H Stone,G Whitesides.Formation of droplets and bubbles in a microfluidic t-junction-scaling and mechanism of break up. Lab on a Chip . 2006
  • 8Taotao Fua,,Youguang Maa,Denis Funfschillingb,Huai Z. Lib.Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chemical Engineering Science . 2009
  • 9Yu Z,Hemminger O,Fan L-S.Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels. Chemical Engineering Science . 2007
  • 10UMBANHOWAR P B,PRASAD V,WEITZ D A.Monodis-perse emulsion generation via drop break off in a coflowing stream. Langmuir . 2000

二级参考文献9

  • 1赵庆军,何利民,徐建中.水平管段塞流压力/压差波动特性分析[J].工程热物理学报,2005,26(3):441-446. 被引量:8
  • 2罗小明,何利民,陈振瑜.下倾管中段塞流液塞长度波动的非线性分析[J].高校化学工程学报,2006,20(5):702-706. 被引量:3
  • 3Nishikawa K, Sekoguchi K, Fukano T. On the pulsation phenomena in gas-liquid two-phase flow (Relationship between pulsatiing pressure and flow pattern in upward two-phase flow) [J]. JSME Bulletin, 1969, 12(54): 1410-1416.
  • 4Dukler A E, Hubbard M D. A model for gas-liquid slug flow in horizontal and near horizontal tubes [J].Ind Eng Chem Fundam, 1975, 14(4): 337-347.
  • 5Nicholson M K, Aziz K, Gregory G A. Intermittent two phase flow in horizontal pipes: predictive models [J]. Can J Chem Eng, 1978, 56(12): 653-663.
  • 6Kokal S L, Stanislav J F. An experimental study of two-phase flow in slightly inclined pipes: I. Flow patterns; II. Liquid holdup and pressure drop [J]. Chem Eng Sei, 1989, 44: 681-693.
  • 7Taitel Y, Barnea D. Effect of gas compressibility on a slug-tracking model [J]. Chem Eng Sei, 1998, 53(11): 2089-2097.
  • 8穆克进,王岳,雷宇,张哲巅,聂超群,肖云汉.预混火焰前锋的观测及提取[J].工程热物理学报,2007,28(5):891-893. 被引量:2
  • 9赵越超,李志彪,王涛,何利民,宋永臣.水平管段塞流持液率的试验统计分析[J].中国海上油气,2007,19(4):285-288. 被引量:2

共引文献6

同被引文献73

  • 1Whitesides GM. The origins and the future of microfludics. Nature, 2006, 442:368-373.
  • 2de Menech M, Garstecki P, Jousse F, Stone HA. Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech, 2008, 595:141-161.
  • 3Fu TT, Wu YN, Ma YG, Li HZ. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting. Chem Eng Sci, 2012, 84:207-217.
  • 4Fu TT, Ma YG, Funfschilling D, Li HZ. Dynamics of bubble breakup in a microfluidic T-junction divergence. Chem Eng Sci, 2011, 66: 4184-4195.
  • 5Wu YN, Fu TT, Zhu CY, Lu YT, Ma YG, Li HZ. Asymmetrical breakup of bubbles at a microfluidic T-junction divergence: feedback effect of bubble collision. Micro Nano, 2012, 13:723-733.
  • 6Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. Formation of droplets and bubbles in a microfluidic T-junction: scaling and mechanism of break-up. Lab Chip, 2006, 6:437-446.
  • 7Song H, Tice JD, Jsgmagilov RF. A microftuidic system for controlling reaction networks in time. Angew Chem Int Ed, 2003, 42:768-772.
  • 8Link DR, Anna SL, Weitz DA, Stone HA. Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett, 2004, 92: 054503.
  • 9Yamada M, Doi S, Maenaka H, Yasuda M, Seki M. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis. J Colloid Interf Sci, 2008, 321:401-407.
  • 10Menetrier-Deremble L, Tabeling P. Droplet breakup in microfluidic junctions of arbitrary angles. Phys Rev E, 2006, 74:035303.

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部