摘要
假定保险公司的盈余为Crámer-Lundberg过程,保险公司的投资市场是由一个无风险债券和n个风险证券构成的资本市场.风险证券的价格服从带跳的扩散过程.在均值-方差准则下通过最优控制原理来研究保险公司的最优投资策略选择问题.得到了最优投资策略和有效边界的显式表达式.与在最大化最终财富期望效用准则下得到的最优投资策略不同,所得到的最优策略依赖保险索赔过程的所有因素.最后分析了最优投资策略随保险索赔过程各个因素变化的动态性质.
Assume that the surplus of an insurer follows the compound Poisson risk process and the insurer would invest its surplus in a financial market,which consists of one risk-free bond and n risky assets,whose prices follow an n-dimensional jump-diffusion process.The optimal investment strategy under the meanvariance principle for the insurer is studied by the stochastic control approach.The closed and explicit formulas for the optimal investment strategy and the efficient frontier are derived.Unlike optimal strategies derived under other criteria such as maximizing the expected exponential utility function of an insurer's terminal wealth,the optimal investment strategy derived in this paper depends on all model parameters for an insurer.Moreover,the effects of the model parameters on the optimal investment strategy and some dynamic properties of the efficient frontier are analyzed.
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2011年第4期749-749,共1页
Systems Engineering-Theory & Practice
基金
国家自然科学基金(71071071
70871058
70871104)
教育部人文社会科学基金(09YJA790100)
国家博士后基金(20080431079
200902507)
江苏省高校哲学社会科学基金(09SJB790013)
南京财经大学研究项目(Y1002
2010JG015)
关键词
保费率
索赔强度
复合过程
跳跃扩散市场
最优投资策略
有效边界
premium rate
claim arrival intensity
compound Poisson risk process
jump-diffusion market
optimal investment strategy
efficient frontier