摘要
研究带有反馈的具有正、负两类顾客的Geom/Geom/1离散时间休假排队模型.休假排队策略为单重休假,其中负顾客不接受服务,只起一对一抵消队首正在接受服务的顾客作用.完成服务的正顾客以概率σ(0≤σ≤1)等待下次服务,以概率σ离开系统.运用拟生灭过程和矩阵几何解方法得到队长的稳态分布的存在条件和表达式,进而求出系统队长稳态分布的随机分解.此外,我们利用了数值例子进一步反映参数对平均队长的影响.
The paper deals with a Geom/Geom/1 Bernoulli feedback queue with single vacation in which customers are either "positive" or "negative". The vacation policy is single vacation, negative customers needn't accept service, only removing the positive customer who is accepting service one by one. Just after completion of his service, a positive customer may leave the system with probability σ(0≤σ^-≤1), or feedback with probability σ^-. Using QBD (quasi birth and death) process and matrix-geometric solution, we obtain the steady-state distributions for the number of customers in the system. We also provide some numerical results to illustrate the effect of the parameters on several performance characteristics.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第8期125-129,共5页
Mathematics in Practice and Theory
基金
河北省高等学校科学技术研究指导项目(Z2010182)