期刊文献+

三维泊松方程基于Richardson外推法的高阶紧致差分方法 被引量:2

A High-Order Compact Difference Method Based on Richardson Extrapolation for the 3D Poisson Equation
原文传递
导出
摘要 基于Richardson外推法提出了数值求解三维泊松方程的高阶紧致差分方法.方法通过利用四阶和六阶紧致差分格式,分别在细网格和粗网格上求解,然后利用Richardson外推技术和算子插值方法,得到三维泊松方程在细网格上的六阶和八阶精度的数值解.数值实验结果验证了该方法的精确性和有效性. A new high-order compact finite difference method based on the Richardson extrapolation technique is proposed to solve the three-dimensioned Poisson equation. For a particular implementation, a fine grid equation and a coarse grid equation are solved by using a fourth-order and sixth-order compact difference scheme, then the Richardson extrapolation and an operator interpolation scheme are used by combining the two approximate solutions to get a sixth-order and eighth-order accuracy solution on fine grid. Numerical experiments are conducted to verify the accuracy and effectiveness of present method.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第8期146-152,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10502026 10662006)
关键词 三维泊松方程 高阶紧致差分方法 RICHARDSON外推法 交替方向隐式迭代 3D poisson equation high order compact difference method Richardson extrapolation alternating direction implicit (ADI) iteration.
  • 相关文献

参考文献6

  • 1葛永斌,田振夫,马红磊.三维泊松方程的高精度多重网格解法[J].应用数学,2006,19(2):313-318. 被引量:18
  • 2葛永斌,吴文权,卢曦.基于二维泊松方程六阶紧致格式的多重网格方法[J].上海理工大学学报,2002,24(4):337-340. 被引量:8
  • 3Kouatchou J,,Zhang J.Optimal injection operator and high order schemes for multigrid solution of 3D Poisson equation. International Journal of Computer Mathematics . 2000
  • 4Gupta M M,Kouatchou J.Symbolic derivation of finite difference approximations for the three dimensional Poisson equation. Numerical Methods for Partial Differential Equation . 1998
  • 5ZHANG J.Multigrid method and fourth-order compact scheme for2D Poisson equation with unequal mesh-size discretization. Journal of Computational Physics . 2002
  • 6Sun Haiwei,zhang Jun.A high-order finite difference discretization strategy based on extrapolation for convection-diffusion equation. Numerical Methods for Partial Differential Equation. 20(1): 18-32 . 2004

二级参考文献21

  • 1田振夫.求解泊松方程的紧致高阶差分方法[J].西北大学学报(自然科学版),1996,26(2):109-114. 被引量:11
  • 2吕涛 石济民 等.区域分解算法[M].北京:科学出版社,1997.200-223.
  • 3哈克布思W.多重网格方法[M].北京:科学出版社,1988..
  • 4Schaffer S. High order multi-grid methods[J]. Math. Comput. , 1984,43,89-115.
  • 5Gupta M M, Kouatchou J,Zhang J. Comparison of Second and Four-order Discretizations for Multigrid Poisson Solvers[J]. J. Comput Phys. , 1997,132: 226 -232.
  • 6Spotz W F,Carey G F. A high-order compact formulation for the 3D poisson equation[J]. Numerical Methods for Partial Differential Equations, 1996,12 : 235-243.
  • 7Gupta M M, Kouatchou J. Symbolic derivation of finite difference approximations for the three-dimensional poisson equation[J]. Numerical Methods for Partial Differential Equations, 1998,14: 593 -606.
  • 8Kwon Y,Stephenson J W. Single cell finite difference approximations for poissons equation in three variables[J]. App. Math. Notes,1982,2:13-19.
  • 9Brandt A. Multi-level adaptive solution to boundary-value problems[J]. Math. Comput. , 1977,31:333-390.
  • 10Wesseling P W. An Introduction to Multigrid Methods[M]. Chichester: Wiley, 1992.

共引文献21

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部