期刊文献+

轴向运动复合材料圆柱壳的非线性振动研究 被引量:6

STUDY ON THE NONLINEAR VIBRATION OF AXIALLY MOVING CYLINDRICAL SHELLS MADE FROM COMPOSITES
原文传递
导出
摘要 采用Runge-Kutta法和多尺度法对轴向运动分层复合材料薄壁圆柱壳的非线性振动特性进行了研究.首先根据层合壳理论建立轴向运动分层复合材料薄壁圆柱壳的波动方程,利用Galerkin法对方程进行离散,得到相互耦合模态方程组.然后应用Runge-Kutta法分析了不同参数条件下的幅频特性曲线,得到了系统由于固有频率接近所导致的内共振现象,以及系统呈现软特性等非线性特性.最后采用多尺度法进行了系统1:1内共振时的近似解析分析,对系统在不同参数下的振动研究表明,激振力幅值、阻尼、速度等参数对位移响应幅值、共振区间、模态间的耦合度及系统软特性程度均有影响,其结论与数值计算结果一致,并同时对解的稳定性进行了研究. Runge-Kutta and multiscale methods are used to study nonlinear vibration characteristics of axially moving,multi-layered cylindrical shells made from composites.A nonlinear wave vibration equation of the thin cylindrical shell made from composites is established firstly,taking multilayer and axially movement into account,based on layered shell theory.The equation is discretized by Galerkin's method and then interconnected modal equations are obtained.Runge-Kutta method is applied to analyze curves of amplitude-frequency characteristic with different parameters.The results show some nonlinear properties of the system such as the phenomenon of internal resonance due to two closed natural frequencies and soft feature.Finally,multiscale method is introduced to investigate approximate analytical solutions of the system with 1:1 internal resonance.The results indicate that excitation amplitude,damping and speed can affect response amplitude,range of interval resonance,coupling between two modes and soft feature of the system.Conclusions with different methods coincide and stability of the system is further discussed.
出处 《固体力学学报》 CAS CSCD 北大核心 2011年第2期176-185,共10页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金和上海宝钢集团公司联合资助(50574019) 国家"863"计划项目(2008AA04Z135) 国家科技部重大基础研究前期研究专项(2003CCA03900)资助
关键词 RUNGE-KUTTA法 多尺度法 分层 1:1内共振 稳定性 Runge-Kutta method multiscale method multi-layer 1:1 internal resonance stability
  • 相关文献

参考文献11

  • 1王延庆,郭星辉,常海红,巴颖.旋转薄壁圆柱壳振型进动的非线性振动特性[J].固体力学学报,2009,30(3):267-279. 被引量:5
  • 2李健,郭星辉,李永刚,颜云辉,董家林.基于Galerkin法的旋转薄壁圆柱壳非线性行波振动的数值分析[J].振动与冲击,2008,27(12):9-12. 被引量:4
  • 3李健,郭星辉,郭明涛,颜云辉.复合材料薄壁圆柱壳动态弹性模量的研究[J].东北大学学报(自然科学版),2008,29(12):1770-1773. 被引量:7
  • 4Chen S H,Huang J L,Sze KY.Multidi mensionallindstedt-poincare method for nonlinear vibration ofaxially moving beams. Journal of Sound and Vi-bration . 2007
  • 5S. H. Chen,Y. K. Cheung,S. L. Lau.On the internal resonance of multi-degree-of-freedom systems with cubic nonlinearity. Journal of Sound and Vibration . 1989
  • 6Argento,A.,Scott,R.Dynamic instability of layered anisotropic circular cylindrical shells: Part I. Theoretical developments. Journal of Sound and Vibration . 1993
  • 7Riedel CH,Tan CA.Coupled,forced response of an axial-ly moving strip with internal resonance. Internal Journal of Non-linear Mechanics““2002””37 . 2002
  • 8Moussaoui F,Benamar R.Non-linear vibrations of shell-type structures: a review with bibliography. Journal of Sound and Vibration . 2002
  • 9Lam K Y,Loy C T.Analysis of rotating laminated cylindrical shells by different thin shell theories. Journal of Sound and Vibration . 1995
  • 10Lam K Y,Loy C T.Analysis of rotating laminated cylindrical shells by different thin shell theories. Journal of Sound and Vibration . 1995

二级参考文献23

  • 1李健,李红影,郭星辉.圆柱壳几何大变形非线性频率求解的渐近摄动法[J].振动与冲击,2007,26(3):42-44. 被引量:1
  • 2李健,郭星辉,李永刚.薄壁圆柱壳旋转波动振动分析[J].东北大学学报(自然科学版),2007,28(4):553-556. 被引量:8
  • 3Sakaguchi R L, Wiltbank B D, Murchison C F. Prediction of composite elastic modulus and polymerization shrinkage by computational micromechanics [ J ]. Dental Materials, 2004,20 (4) : 397 - 401.
  • 4Kostopoulos V, Loutas T H, Sotiriadis G. On the Young' s modulus measurements of ceramic and carbon fibres using elastic wave propagation techniques: comparison against quasi-static tensile tests [J ]. Advanced Composites Letters, 2004,13(2) : 131 - 137.
  • 5Jinen E, Tanaka M, Maeda T, et al. Changes of dynamic modulus of polyethylene steel composites under repeated plane bending[ J ]. Chemistry of High Polymers, 1971,28 (3) : 968 - 972.
  • 6Gilbert J L, Dong D R. Numerical time-frequency transform technique for the determination of the complex modulus of composite and polymeric biomaterials from transient timebased experiments [ C ]//Proceedings of the Symposium on Biomaterials' Mechanical Properties. Pittsburgh, 1992 : 14 - 18.
  • 7Yeh G C K. Forced vibration of a two-degree-of-freedom system with combined Coulomb and viscous damping [J ]. Journal of Acoustical Society of America, 1964,39 ( 1 ) : 15 - 24.
  • 8Fox C H J, Hardie D J W. Harmonic response of rotating cylindrical shell[J]. Journal of Sound and Vibration, 1985, 101(4) :495 - 510.
  • 9Werner S. Vibrations of shells and plates[M]. New York: Marcel Dekker, 1981:135-151.
  • 10Lam K Y, Loy C T. Analysis of rotating laminated cylindrical shells by different thin shell theories[J]. Journal of Sound and Vibration, 1995,186( 1 ) : 23 - 35.

共引文献11

同被引文献68

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部