期刊文献+

基于最大后验估计的影像盲超分辨率重建方法 被引量:1

Blind super-resolution reconstruction method based on maximum a posterior estimation
下载PDF
导出
摘要 为了减小配准误差对盲超分辨率重建的影响,提出了一种影像配准和盲超分辨率重建联合处理的模型与方法。将配准参数、模糊函数和高分辨率影像建立在统一的最大后验估计模型框架内,并利用循环坐标下降最优化策略对模型进行求解,从而实现了配准参数、模糊函数和高分辨率影像的联合求解。实验结果证明:与传统盲超分辨率重建算法相比,该算法能够有效减少重建影像中的伪痕,在视觉评估上和定量评价上均能得到更好的结果。 In this paper,a new joint Maximum A Posterior(MAP) formulation was proposed to integrate image registration into blind image Super-Resolution(SR) reconstruction to reduce image registration errors.The formulation was built upon the MAP framework,which judiciously combined image registration,blur identification and SR.A cyclic coordinate descent optimization procedure was developed to solve the MAP formulation,in which the registration parameters,blurring function and High Resolution(HR) image were estimated in an alternative manner given to the two others,respectively.The experimental results indicate that the proposed algorithm has considerable effectiveness in terms of both quantitative measurement and visual evaluation.
出处 《计算机应用》 CSCD 北大核心 2011年第5期1209-1213,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(409305324097122040801182)
关键词 超分辨率 配准误差 最大后验概率 影像配准 模糊函数辨识 Super-Resolution(SR) registration error Maximum A Posterior(MAP) image registration blurring function identification
  • 相关文献

参考文献23

  • 1HE H,KONDI L P.A regularization framework for joint blur esti-mation and super-resolution of video sequences. IEEE Inter-national Conference on Image Processing . 2005
  • 2NG MK,SHEN H,LAME,et al.A total variation based super-resolution reconstruction algorithm for digital video. http://www.eee.hku.hk/optima/pub/jour-nal/0706_JASP.pdf . 2010
  • 3WIRAWAN P D,MAITRE H.Multi-channel high resolutionblind image restoration. Proceedings of IEEE ICASSP . 1999
  • 4N.A.Woods,N.P.Galatsanos,A.K.Katsaggelos.Stochastic methods for joint registration,restoration,and interpolation of multiple undersampled images. IEEE Transactions on Image Processing . 2006
  • 5Yu He,,Kim Huiyap,Li Chen,et al.A nonlinear least squaretechnique for simultaneous image registration and super-resolution. IEEE Transactions on Image Processing . 2007
  • 6Zhang Liangpei,,Zhang Hongyan.A super-resolution reconstruction algorithm for surveillance images. Signal Processing . 2010
  • 7Park S C,Park M K,Kang M G.Super-resolution image reconstruction: A technical overview. IEEE Signal Processing Magazine . 2003
  • 8Farsiu S,Robinson D,Elad M,et al.Advances and challenges in super-resolution. International Journal of Imaging Systems and Technology . 2004
  • 9Tsai R Y,Huang T S.Multiframe Image Restoration and Registration. Advances in Computers . 1984
  • 10Sroubek F,Cristobal G,Flusser J.A unified approach to super-resolution and multichannel blind deconvolution. IEEETransactions on Image Processing . 2007

同被引文献19

  • 1Nasrollahi K, Moeslund TB. Super-resolution: A comprehen- sive survey [J]. Machine Vision & Applications, 2014, 25 (6) : 1423-1468.
  • 2Patel RC, Joshi MV. Super-resolution of hyperspectral ima- ges: Use of optimum wavelet filter coefficients and sparsity regularization [J]. IEEE Transactions on Geoscience&Re-mote Sensing, 2015, 53 (4): 1728-1736.
  • 3Liu W, Li S. Sparse representation with morphologic regulari- zations for single image super-resolution [J]. Signal Proces- sing, 2014, 98 (5): 410-422.
  • 4Bahy RM, Salama GI, Mahmoud TA. Adaptive regulariza- tion-based super resolution reconstruction technique for multi- focus low-resolution images [J]. Signal Processing, 2014, 103 (10):155-167.
  • 5Chen Q, Montesinos P, Sun Q, et al. Adaptive total varia tion denoising based on difference curvature [J]. Image and Vision Computing, 2010, 28 (3):298-306.
  • 6Purkait P, Chanda B. Super resolution image reconstruction through bregma iteration using morphologie regularization [J]. IEEE Transactions on Image Processing, 2012, 21 (9) : 4029-4039.
  • 7Purkait P, Chanda B. Super resolution image reconstruction through bregma iteration using morphologie regularization [J]. IEEE Transactions on Image Processing, 2012, 21 (9) : 4029-403 9.
  • 8Mallat S, Yu G. Super-resolution with sparse mixing estima- tors [J]. IEEE Transactions on Image Processing, 2010, 19 (11) : 2889-2900.
  • 9娄帅,丁振良,袁峰,李晶.基于总变分的鲁棒的超分辨率重建算法[J].计算机工程与设计,2009,30(9):2241-2243. 被引量:2
  • 10林云莉,赵俊红,朱学峰,胡永健.改进的TV模型图像修复算法[J].计算机工程与设计,2010,31(4):776-779. 被引量:11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部