摘要
为提高数据库分类系统的分类精度,提出一种新的分类方法。首先,利用模糊C-均值聚类算法对数据库中的连续属性进行离散化;然后,在此基础上提出一种改进的模糊关联算法挖掘分类关联规则;最后,通过计算规则和模式之间的兼容性指标来构造特征向量,构建支持向量机的分类器模型。实验结果表明,该方法具有较高的分类识别能力和分类效率。
To increase the classification accuracy of the database classification system,this paper proposed a new classification method.Firstly,the continuous attributes were dispersed by the Fuzzy C-Mean(FCM) algorithm.Secondly,an improved fuzzy association method was proposed to mine the classification association rules.Eventually,the compatibility between the generated rules and patterns was used to construct a set of feature vectors,which were used to generate a classifier.The experimental results demonstrate that the method has high discrimination and efficiency.
出处
《计算机应用》
CSCD
北大核心
2011年第5期1348-1350,1366,共4页
journal of Computer Applications
基金
国家自然科学基金资助项目(60736009)
关键词
数据挖掘
支持向量机
模糊关联规则
分类系统
离散化
模糊C-均值
Data Mining(DM)
Support Vector Machine(SVM)
fuzzy association rule
classification system
discretization
Fuzzy C-Mean(FCM)