摘要
为了提高统计模型似然比测试的语音活动检测(VAD)的检测性能,利用前后语音帧间存在的统计相关特性,提出一种改进VAD算法。通过前帧语音频谱分量对先验信噪比进行递归估计,然后利用前一帧的语音检测状态来设计判决阈值,建立了双阈值隐马尔可夫模型语音活动判决规则。实验表明,此帧间相关性VAD算法的检测指标值优于Sohn算法。
To enhance the detection performance of statistical model-based Voice Activity Detection(VAD) using likelihood ratio test,an improved VAD was proposed by utilizing the correlation between tandem speech frames.First a priori Signal-to-Noise Ratio(SNR) was estimated using recursive estimation method based on the result of the previous speech frame instead of the traditional decision-directed method.Secondly double thresholds were designed by depending on the previous frame's detention result.Finally a detection rule was presented based on two-state Hidden Markov Model(HMM) coupled with double thresholds.The experimental results show that the inter-frame correlation based VAD scheme gets better performance than the Sohn's VAD.
出处
《计算机应用》
CSCD
北大核心
2011年第5期1447-1449,共3页
journal of Computer Applications
基金
国家自然科学基金资助项目(60874060)
关键词
语音活动检测
统计模型
相关性
似然比测试
先验信噪比
阈值
voice activity detection
statistical model
correlation
likelihood ratio test
a priori SNR
threshold