摘要
在太阳同步回归轨道遥感卫星的小推力轨道转移控制问题的研究中,小推力推进与化学推进方式有本质不同,不能再用速度脉冲的方法来设计轨道。针对推力方式不同的问题,采用了一组无奇点的春分点根数表示小推力卫星的动力学模型,从最优控制理论出发,给出了协态变量微分方程和最优推力方向,将轨道转移问题转化为非线性参数优化问题,利用非线性序列二次型规划法求解。对遥感卫星在1天回归和10天回归轨道之间的转移控制问题进行仿真,证明了方法的有效性。
In this paper,the low-thrust orbit transfer problem of the remote sensing satellite is studied.Low-thrust propulsion differs fundamentally from chemical propulsion.The design of trajectory can not adopt velocity impulse method.This article utilizes a set of non-singular point of equinoctial elements to describe the low-thrust satellites dynamic model and gives the co-state variable differential equations and optimal control rate based on optimal control theory.The trajectory design problem is transformed into non-linear parameter optimization problem and is solved using non-linear sequential quadratic programming method.Finally,by using the method to simulate the transfer orbits from the recursive orbit with one day repeat period to the one with ten days repeat period,the effectiveness of the proposed method is verified.
出处
《计算机仿真》
CSCD
北大核心
2011年第4期58-61,共4页
Computer Simulation
关键词
遥感卫星
小推力
太阳同步回归轨道
轨道转移
最优控制理论
非线性参数优化
Remote sensing satellite
Low thrust
Sun-synchronous and recursive orbit
Orbit transfer
Optimum control theory
Nonlinear parameter optimization