期刊文献+

基于支持向量回归机的扩展卡尔曼滤波 被引量:3

Extended Kalman Filter Based on Support Vector Regression
下载PDF
导出
摘要 在信号滤波算法优化问题的研究时,扩展卡尔曼滤波算法的精度依赖于系统模型精确性。采用一种改进的扩展卡尔曼滤波算法研究了状态量和观测量相同的系统。用滤波后的状态量和当前观测量以得到实时噪声,求出过程噪声方差阵,在此基础上利用支持向量回归机算法对过程噪声方差阵进行训练,从而得到新的过程噪声方差阵,用此阵作为下一次扩展卡尔曼滤波的过程方差阵,以后继续上述迭代过程。结果证明方法极大的提高了滤波精度。仿真说明方法的有效性。 Concerning the defect that the accuracy of the extended Kalman filter(EKF) depends on the accuracy of system model,in this paper,we use an improved EKF algorithm to research a system whose state variables are equal to observing variables.Firstly,we use the filtered state variables and current observing variables so as to obtain the real time noises,from which we then find the process noise variance matrix.On this basis,we train the process noise variances by using support vector regression(SVR) to acquire new ones,which we consider as the process variance matrix in the EKF next time.Next,we continue this iterative process.With this method,the accuracy of filter is improved greatly.At the end of this paper,we present some concrete simulative examples to show the validity of this method.
出处 《计算机仿真》 CSCD 北大核心 2011年第4期156-159,175,共5页 Computer Simulation
基金 国家自然科学基金项目(60574004) 国家自然科学基金资助重点项目(60736024) 教育部科技创新工程重大项目培育资金项目(708069)
关键词 扩展卡尔曼 噪声方差阵 支持向量回归机 滤波精度 Extended Kalman filter(EKF) Process noise variance matrix Support vector regression(SVR) Accuracy of filter
  • 相关文献

参考文献8

  • 1王新屏,张显库,张丽坤.H_∞滤波与Kalman滤波的对比研究[J].自动化与仪器仪表,2003(1):9-11. 被引量:5
  • 2曾绍华.支持向量回归机算法理论研究与应用[D]重庆大学,重庆大学2006.
  • 3Reza Olfati-Saber,Dartmouth College.Distributed Kalman Filterwith Embedded Consensus Filters. Proceedings of the 44thIEEE Conference on Decision and Control,and the European Con-trol Conference 2005 . 2005
  • 4P Wang,Y C Huang.Support Vector Regression Model of Curren-cy Options Pricing with Stochastic Volatility Models and ForwardExchange Rate. IEEE/2009 Fifth International Joint Confer-ence on INC,IMS and IDC . 2009
  • 5P Chittari,N R S Raghavan.Support Vector based Demand Fore-casting for Semiconductor Manufacturing. Proceedings IEEEInternational Symposium on Semiconductor Manufacturing . 2006
  • 6S Ronnback.Development of a INS/GPS Navigation Loop for anUAV. . 2000
  • 7Gunn S.Support Vector Machines for Classification and Regression. Technical Report ISIS-1-98 . 1998
  • 8Seung-Min Oh,Eric No Johnoson.Development of UAV Navigation System Based on Unscented Kalman Filter. Guidance,Navigation,And Control Conference . 2006

二级参考文献4

共引文献4

同被引文献31

  • 1戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J].机械工程学报,2007,43(2):92-95. 被引量:45
  • 2WANG Yanqing, YE Yanhui, GAO Yanfeng . A stable tracking control method for an Autonomous Welding Mo- bile Robot [ J]. Applied Mechanics and Materials, 2011 (79) :264 -269.
  • 3Divya Aneesh. Tracking Controller of Mobile Robot [C]//2012 International Conference on Computing, E- lectronics and Electrical Technologies [ ICCEET ] . Tamil Nadu, India: [ s. n. ] ,2012:343 - 349.
  • 4Bolognani S ,Tubiana L,Zigliotto M. Extended kalman fil- ter tuning in sensorless PMSM drives [ J ]. IEEE Trans. on Industry Applications ( S0093 - 9994 ), 2003,39 ( 6 ) : 1741 - 1747.
  • 5Greg Welch, Gary Bishop. An introduction to the Kalman filter [EB/OL]. [2001 - 09 - 21 ] . http://info, acm. org/pubs/toc/CRnotice, html,.
  • 6WEI Guo, WANG Xin, SUN Jinwei. Method for ultrasonic time-of-flight estimation based on extended Kalman filter [J]. Journal of Jilin University (Engineering and Tech- nology Edition) ,2011,41 (3) :832 - 837.
  • 7Kazem Dastgerdi, Hadi Bidokhti, Assef Zare. Adaptive Sliding Mode Control of Nonlinear Gyro Chaotic Vibration [ C]//2012 IEEE Students' Conference on Electrical,E- lectronics and Computer Science. Bhopal: [ s. n. ] ,2012: 1-4.
  • 8PAN Yaodong. Variable structure control by switching a- mong Feedback Control Laws [ C ]//45th IEEE Confer- ence on Decision&Control. San Diego ,CA: [ s. n. ] ,2006 : 789 - 794.
  • 9Farzad P, Mattias P K. Adaptive control of dynamic mo- bile robots with nonholonomic constrains [ J ]. Computers and Electrical Engineering,2002(28):241 -253.
  • 10XU Jianxin. A quasi-optimal sliding mode control scheme based on control Lyapunov function [ J ]. Journal of the Franklin Institute,2012,349(4) : 1445 - 1458.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部